Direct measurement of tau neutrino production

A. Ariga University of Bern, for the DsTau Collaboration

Tau neutrino

- v_{τ} is the least studied particle in the standard model. Only 15 events were observed so far.
- v_{τ} cross-section measurement has a large uncertainty > 50%.
 - Main uncertainty due to the v_{τ} production process.
- Precise measurement of it will be a test of lepton universality in neutrino scattering, violation of which implies a new physics.

The DsTau project at the CERN SPS

- Global motivation: Test of lepton universality in neutrino CC interactions
 - error source of v_{τ} cross section is dominated by the systematic uncertainty from v_{τ} production.
- DsTau goal:
 - Improve knowledge of tau-neutrino production: systematic uncertainty >50% -> ~10%.
 - Re-evaluate ν_τ cross section of DONUT.
 - Provide essential data for future neutrino experiments, e.g. SHiP, DUNE, Hyper-K etc.
- Method: Direct measurement of tau-neutrino production in 400 GeV proton interactions.
 - Dominant source:

$$D_s \rightarrow \tau \nu_{\tau} \rightarrow X \nu_{\tau} \nu_{\tau}$$

- Detect the double-kink topology within a few mm by emulsion detector.
- Small background by requesting charmpair production.
- Measure differential production crosssection of D_s mesons, ~1000 D_s for 10 % v_{τ} flux uncertainty.

Detection of $D_s \longrightarrow T \longrightarrow X$ events (double-kink topology)

Ds $\rightarrow \tau$ decay has a very small kink angle ~7mrad. A high precision detector is required.

(τ decay kink angle ~100 mrad)

Emulsion detector with nano-precision readout.

Towards detection of a few mrad kink topology

Emulsion detectors: 3D tracking device with 50nm AgBr crystal

precision

Emulsion film

Cross-sectional view

Emulsion layer (44 μm)

Plastic base (200 μm)

Emulsion layer (44 µm)

High precision measurement

- Intrinsic resolution of each grain = 50nm
 - Two grains on top and bottom of 200 μ m base \rightarrow 0.35 mrad
 - Discrimination of 2 mrad at 4 sigma level.
- Conventional systems spoil it due to mechanical vibration of Z axis (about 0.2μm, corresp. 1.5 mrad)
- → Need high precision Z-axis
- Piezo objective scanner for Z axis.
- Angular measurement reproducibility of 0.15 mrad was achieved.

 Angular alignment between films to be done by using dense 400 GeV proton tracks

Piezo objective scanner

Module structure for $D_s \rightarrow \tau \rightarrow X$ measurement

5~10 units (total 50~100 emulsion films)

ECC for momentum measurement (26 emulsion films interleaved with 1 mm thick lead plates)

400 modules , -- a total film surface

of 500 m^2 for 1000 D_s detection.

Efficiency estimation with preliminary selection (FL: flight length) :

Plastic sheet (200 µm)

Emulsion film

(50 µm thick emulsion layers on both sides of a 200 µm thick plastic base)

1 film <FL(D_s)&FL(τ)< 5 mm & $\Delta\theta$ (D_s $\rightarrow \tau$)> 2 mrad & $\Delta\theta$ (τ)> 15 mrad & partner-charm detection \rightarrow Efficiency 20% (will be further optimized using more careful simulations)

Two step analysis for double kink

search

- High speed scanning to select τ > X
 + partner-charm decays (trigger)
- Precision measurement to detect D_s→τ decay.

← A Fast scanning system being developed in Nagoya, aiming at the speed of 9000 cm²/h (22 m²/day). Angular resolution = 2mrad

A nano-precision measurements in Bern. Angular resolution = 0.3 mrad

Ds momentum reconstruction

- The peculiar decay topology is rich in kinematical information.
- Ds momentum reconstruction only by topological variables

- A Neural Network with 4 variables was trained with MC events.
- Momentum resolution for $\tau \rightarrow 1$ prong decays
- $\Delta p/p = 18\%$

Status of the project

- Lol submitted to the CERN-SPSC in Feb. 2016 (SPSC-I-245)
 - → positive feedback
 - > proposal to be submitted including the test beam in 2016
- proton beam test in Nov. 2016, May 2017
- proposal submission by Autumn 2017

Study of ν_{τ} production by measuring $D_s \to \tau$ events in 400 GeV proton interactions: Test of lepton universality in neutrino charged-current interactions

S. $Aoki^1$, A. $Ariga^2$, T. $Ariga^2$, K. $Kodama^3$, M. $Nakamura^4$, O. $Sato^4$ ¹Kobe University

²AEC/LHEP, University of Bern

³Aichi University of Education

⁴F-lab, Nagoya University

Collaboration

- Aichi University of Education, Japan
- Middle East Technical University, Turkey
- University of Bern, Switzerland
- Institute of Space Science, Romania
- Kobe University, Japan
- Kyushu University, Japan
- Joint Institute for Nuclear Research, Russia
- Nagoya University, Japan

Test beam 2016. Detector assembling at the CERN dark room

Piling up of 200 components: 10 tungsten, 100 films, 90 plastic sheets.

Detector setup at the H4 beamline

Protons

DsTau proton run summary, 2016

- About 10⁷ protons per a detector module, 11 modules in total.
- O(10⁷) interactions, about 5x10⁶ interactions expected in tungsten target

Expected recorded number of events

- ~5x10⁶ proton interactions (in tungsten target)
- ~10 4 charm events (~2000 D_s,
- ~9500 D°, ...)
- ~100 D_s decaying to τ events

Nov 9th

Nov 14th

A glance at data from 2016 run

Data analysis is ongoing.

Decay topology search

A volume of 6 cm x 6 cm x 10 films was preliminary analyzed. About 30,000 proton interactions. 150 events with possible decay topology (expected charm events ~ 30).

Combination with NA61?

- Charge identification of Ds daughters as well as daughters of all other charmed particles.
- Total production cross-section of Ds and branching ration BR(Ds $\rightarrow \tau$), \rightarrow Vcs measurement.
- Practical challenge:
 - Time stamping in emulsion
 - Interface detector (e.g. silicon pixel) between emulsion and TPC.

Summary and prospects

- $D_s \rightarrow \tau \rightarrow X$ precision measurement in proton interactions is essential input to precise evaluation of v_{τ} cross section \rightarrow DsTau
- Emulsion detectors with nano-precision readout
- Aiming to analyze ~2x10⁸ proton interactions to detect 1000 D_s→τ events (physics run in 2018 and 2021)
- Various by-product studies using the ~105 charmed-particles
 - e.g. Interaction cross-section of charmed particles, super-nuclei
- Successful data taking in test beam in 2016, 2017
- Data analysis in progress
- Technical publications are under preparation
- Experimental proposal will be submitted soon
 - Physics run in 2018 and 2021.

Thanks!

Results from DONuT (1)

ν_τ CC cross section

$$\sigma_{v\tau}(E) = \sigma_{v\tau}^{const} \times E_{v\tau} \times K_{\tau}(E)$$

 ν_τ CC cross section was calculated as a function of one parameter. The energy-independent part was parameterized as

$$\sigma_{v\tau}^{const} = 7.5(0.335 n^{1.52}) \times 10^{-40} cm^2 GeV^{-1}$$

where **n** is the parameter controlling the longitudinal part of the D_s differential cross section

Phenomenological formula

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - |x_F|)^n \exp(-bp_T^2)$$
longitudinal transverse

dependence dependence

 x_F is Feynman x ($x_F = 2p^{CM}_Z/\sqrt{s}$) and p_T is transverse momentum

Results from DONuT

 v_{τ} CC cross section as a function of the parameter n

Using PYTHIA-derived value of n=6.1

$$\sigma_{v\tau}^{const} = (0.39 \pm 0.13 \pm 0.13) \times 10^{-38} \, cm^2 \, GeV^{-1}$$

$$\sigma_{V\tau}^{const} = 7.5(0.335 \, n^{1.52}) \times 10^{-40} \, cm^2 GeV^{-1}$$

No published data giving n for D_s produced by 800 GeV proton interactions

Systematic uncertainties	
D _s differential cross section (x _F dependence)	~0.50?
Charm production cross section	0.17
Decay branching ratio	0.23
Target atomic mass effects (A dependence)	0.14

How many interactions to be analyzed?

- To detect 1000 Ds $\rightarrow \tau \rightarrow X$ events
 - Efficiency ~20%, BR(Ds \rightarrow τ) = 5.55%
 - 8.2x104 Ds to be produced
 - Ds production cross section in Tungsten target ~4x10-4 @400GeV
- 2x108 proton interactions to be analyzed!
- 4x109 pot needed (0.5 mm tungsten x 10 units)

To expose 4x109 pot with the density 105 tracks/cm2

→ detector surface 4x10⁴ cm² (400 modules)

Detector production facility in Bern

- General purpose film production facility
- 70 m.w.e. underground lab
 - low cosmic background
- 10 m²/week production capability
- 9 pouring table with activetemperature control
- 1 large drying chamber with active humidity control
- To be upgraded for DsTau
 - production speed to be doubled
 - 500 m² \rightarrow half year.

Data reconstruction

1 mm x 1 mm x 10 films

Interactions in the tungsten target

Timetable of the project

DsTau beam test 2017

- Physics goal: Study tau neutrino production by proton beam -> ultimately, to test lepton universality
 - Precision measurement of Ds differential production cross-section (Ds $\rightarrow \tau v_{\tau}$)
- Successful beam test in 2016 for the proof of principle
 - 1/40 scale of DsTau full design. The analysis is ongoing.

- This year,
 - Test an updated detector design, especially film design to improve angular resolution
 - Test lower intensity to fully reconstruct the kinematical information (Momentum measurement in ECC)
 - To improve exposure sequence (Intensity driven synchronization between beam intensity and target mover)

Intensity driven stage control

- Flat top was not flat!
- Last year, the target mover moved with a constant speed during FT, which made no uniformity of proton density.

 This year, control speed depending on the beam intensity.

Intensity driven stage control schematic

Time structure of beam

- The beam gradually increase and drop at the end.
- Intensity is measure about every 0.2 sec.

Comparison

Significant improvement!!

Stage movement test (BM3)

- To check the stage movement, single line exposure was done.
- 105/cm2 with 2.8x105/spill ~2.8cm/spill
- A very flat distribution was observed in emulsion

