Light driven Nuclear-Particle physics and Cosmology 2017 (Pacifico Yokohama)

Optical Cavity Tests of Lorentz Invariance

Yuta Michimura

Department of Physics, University of Tokyo

H. Takeda, Y. Sakai, N. Matsumoto, M. Masaki

Abstract

- compared the speed of light propagating in opposite directions
- $\frac{c + \delta c}{c \delta c}$
- using a double-pass optical ring cavity
- put most stringent limits

$$\left| \frac{\delta c}{c} \right| \lesssim 6 \times 10^{-15}$$

- put new limits on higher order Lorentz violation
- upgrade of apparatus underway
- Y. Michimura et al.: Phys. Rev. Lett. 110, 200401 (2013)
- Y. Michimura et al.: Phys. Rev. D 88, 111101(R) (2013)
- Y. Michimura et al.: arXiv:1602.00391

SR and Lorentz violation

- Special Relativity (1905)
 speed of light is constant
- Lorentz invariance in electrodynamics
- no one could find any violation
- but...
 - quantum gravity suggests violation at some level e.g. $\delta c/c \sim 10^{-17}$

D. Colladay and V. Alan Kostelecký:PRD 58 (1998) 116002

anisotropy in CMB possible preferred frame?

→ motivation for testing SR

http://www.cpt.univ-mrs.fr/ rovelli/loop_quantum_gravity.jpg

Test of Special Relativity

- test of constancy of speed of light
- two types of test: even-parity and odd-parity

Anisotropy in the Speed of Light

can be expanded with spherical harmonics

multipole anisotropy comes from higher order

Previous Limits

- $l={
 m even}$ limits with even-parity experiments
- $l = \mathrm{odd}$ limits with odd-parity experiments

even-parity experiments using orthogonal cavities

M. Nagel+, Nat. Commun. 6, 8174 (2015)

S. R. Parker+: PRL 106, 180401 (2011)

$$\left|\frac{\delta c}{c}\right| \lesssim 10^{-18}$$

$$\left|\frac{\delta c}{c}\right| \lesssim 10^{-17}$$

odd-parity experiment using asymmetric ring cavity

F. Baynes+: PRL 108, 260801 (2012)

Our Limits

• improved limits on l=1 (dipole) anisotropy

• new limits on l=3 (hexapole) anisotropy

Optical Ring Cavity

sensitive to LV when a dielectric is contained

$c + \delta c$ $c - \delta c$	no dielectric CCW CW	dielectric	
no LV	$ \begin{aligned} \nu_+ &= \nu_0 \\ \nu &= \nu_0 \end{aligned} $	$ u_{+} = \nu $ $ \nu_{-} = \nu $ freq. shift $ \infty \text{ LV} $	
LV	$ \begin{aligned} \nu_+ &= \nu_0 \\ \nu &= \nu_0 \end{aligned} $	$\nu_{+} = \nu - \delta \nu$ $\nu_{-} = \nu + \delta \nu$	

• $\nu_+ - \nu_-$ gives LV signal (null measurement)

How Do We Measure 1/4

inject laser beam in CCW

How Do We Measure 2/4

• lock laser frequency to CCW resonance (ν_+)

How Do We Measure 3/4

reflect the beam back into the cavity in CW

How Do We Measure 4/4

LV signal obtained from cavity reflection

Experimental Setup

frequency comparison using double-pass setup

rotate and modulate LV signal

Photo of the Optics

Photo of the Whole Setup

electrical cables

laser source

vacuum enclosure + shielding (optics inside)

turntable

Rotation

• 12 sec / rotation, alternately

Observation Data

- from July 2012 to October 2013
- 393 days, 1.67 million rotations
- duty cycle: 53% (64% after Oct 2012)

Data Analysis 1/3

Data Analysis 2/3

• next, demodulate 1 day data with ω_{\oplus}

Data Analysis 3/3

Demodulation Amps($\omega_{ m rot}$)

- zero consistent at 2σ
 - → no significant LV can be claimed

Demodulation Amps $(3\omega_{\rm rot})$

- zero consistent at 2σ
 - no significant LV can be claimed

Our Limits on Anisotropy

each demodulation amplitude is related to each

anisotropy component

• limits three dipole (l=1) components

$$\left| \frac{\delta c}{c} \right| \lesssim 6 \times 10^{-15}$$
 more than an order of

more than an order of magnitude improvement

• limits on seven hexapole (l=3) components

$$\left| \frac{\delta c}{c} \right| \lesssim 2 \times 10^{-15}$$
 new limit

Our Limits on SME Coefficients

- Standard Model Extension (SME)
 [D. Colladay and V. Alan Kostelecký: PRD 58, 116002 (1998)]
- test theory with all realistic Lorentz violation
- our result put new limits on "camouflage coefficients" of LV in photon sector

Dimension	Coefficient	Measurement	
d=6	$(\overline{c}_F^{(6)})_{110}^{(0E)}$	$(-0.1 \pm 1.5) \times 10^3 \text{ GeV}^{-2}$	
	$\text{Re}[(\overline{c}_F^{(6)})_{111}^{(0E)}]$	$(-0.8 \pm 1.1) \times 10^3 \text{ GeV}^{-2}$	
	$\operatorname{Im}[(\overline{c}_F^{(6)})_{111}^{(0E)}]$	$(-0.6 \pm 1.0) \times 10^3 \text{ GeV}^{-2}$	
d = 8	$-0.020(\overline{c}_F^{(8)})_{110}^{(0E)} + (\overline{c}_F^{(8)})_{310}^{(0E)}$	$(-0.2 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	
	$\operatorname{Re}\left[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}\right]$	$(1.4 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	
	$\operatorname{Re}\left[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}\right]$	$(0.1 \pm 1.3) \times 10^{19} \; \mathrm{GeV^{-4}}$	
	$\left(\overline{c}_F^{(8)}\right)_{330}^{(0E)}$	$(-0.8 \pm 3.3) \times 10^{19} \text{ GeV}^{-4}$	
	$\text{Re}[(\overline{c}_F^{(8)})_{331}^{(0E)}]$	$(-0.3 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	
	$\text{Im}[(\overline{c}_F^{(8)})_{331}^{(0E)}]$	$(-2.8 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	
	$\text{Re}[(\overline{c}_F^{(8)})_{332}^{(0E)}]$	$(2.2 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	
	${ m Im}[(\overline{c}_F^{(8)})_{332}^{(0E)}]$	$(0.2 \pm 1.3) \times 10^{19} \; \mathrm{GeV^{-4}}$	
	$\text{Re}[(\overline{c}_F^{(8)})_{333}^{(0E)}]$	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}^{-4}$	
	$\operatorname{Im}[(\overline{c}_F^{(8)})_{333}^{(0E)}]$	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}^{-4}$	

limits on LV of dimension 6 $10^3~{\rm GeV}^{-2}$

limits on LV of dimension 8 $10^{19}~{\rm GeV}^{-4}$

Upgrade of the Apparatus

current noise level is limited by noise from rotation

 semi-monolithic optical bench to reduce vibration sensitivity

continuous rotation for more stable operation

Apparatus Comparison

Previous Model

- non-monolithic optics
- alternative rotation

New Model

- semi-monolithic optics
- continuous rotation

Apparatus Comparison

- non-monolithic optics
- alternative rotation

New Model

- semi-monolithic optics
- continuous rotation

Continuous Rotation System

rotary connector

wireless data logger

New Model

- semi-monolithic optics
- continuous rotation

Magnetic Noise

- environmental magnetic field noise couple into electronics noise
- can be subtracted by magnetic field measurement

Optics Comparison

reduced beam height simplified electronics

Previous Model

- non-monolithic optics

New Model

- semi-monolithic optics³⁰

Optics Comparison

preliminary noise measurement noise analysis ongoing

New Model

- semi-monolithic optics³¹

Summary and Outlook

Summary

- compared the speed of light propagating in opposite directions
- using a double-pass optical ring cavity
- new limits on higher order LV in photons

Outlook

- currently upgrading the apparatus
 (Y. Sakai and H. Takeda)
- semi-monolithic optics
- continuous rotation

silicon

Additional Slides

Higher Order Lorentz Violation

- Standard Model Extention
- add LV term in Lagrangian for electromagnetic field
- $\hat{k}_F^{(d)}$ is zero for non-LV, d is mass dimension

Higher Order LV and Anisotropy

HOLV gives multipole anisotropy

Systematic Errors

 10% of statistical error at maximum

Cause	Amount	Ratio	
Sagnac effect	< 1mrad/sec	<2%	offset
turntable tilt	< 0.2 mrad	<10%	
detuning	-	3%	
TF meas.	-	3%	
laser frequency actuation meas.	12.9±0.6 MHz/V	5%	calibration
refractive index	3.69 ± 0.01	0.4%	
cavity length	192±1 mm	0.5%	36

Some Photos

silicon inside

spacer made of Super Invar

Cheat Sheet

- rotation frequency f_rot = 0.083 Hz (T_rot = 12 sec)
- wavelength $\lambda = 1550 \text{ nm}$
- laser frequency v = 1.9e14 Hz
- input power P0 = 1 mW
- finesse F = 120
- cavity length L = 140 mm
- silicon length d = 20 mm
- silicon refractive index n = 3.69
- silicon dn/dT = 2e-4 /K
- silicon thermal expansion = 3e-6 /K
- Super Invar thermal exp. = ~ 1e-7 /K
- silicon AR loss I < 0.5 % / surface
- incident angle $\theta = 9.5 \text{ deg}$
- FSR = 1.5 GHz
- FWHM = 12 MHz

- current sensitivity ~ 6e-13 /rtHz
 (~ 4e-11 /rtHz when rotated)
- shot noise ~ 6e-16 /rtHz
- thermal noise ~ 8e-16 /rtHz

(all @ 0.1 Hz)

- Sun speed in CMBR = 369 km/s
- orbital speed of Earth = 30 km/s
- rotational speed of Earth = 0.4 km/s

History

Jul 2011: idea

Nov 2011: first run (10hour)

Jul 2012: data taking started

Oct 2012: continuous data taking

Oct 2013: shut down

38

• cost < ~200万円