

EUROPEAN UNION

IFIN-HH

Extreme Light Infrastructure-Nuclear Physics (ELI-NP) - Phase II

Gamma-beam experiments at ELI-NP: The future is emerging

Dimiter L. Balabanski

Optics & Photonics International Congress LNPC'17: Light-driven nuclear-particle physics and cosmology, Yokohama, April 18th-21st, 2017

Project co-financed by the European Regional Development Fund through the Competitiveness Operational Programme "Investing in Sustainable Development"

Extreme Light Infrastructure – Nuclear Physics (ELI-NP)

<u>Mission:</u> Nuclear Physics studies with high-intensity lasers and brilliant γ beams

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

For detailed information regarding the other programmes co-financed by the European Union please visit www.fonduri-ue.ro, www.ancs.ro, http://amposcce.minind.ro

 Nuclear Physics experiments to characterize laser – target interaction

- Photonuclear Physics
- Exotic Nuclear Physics and astrophysics

complementary to other ESFRI Large Scale Physics Facilities (FAIR- Germany, SPIRAL2- France)

 Applications based on high intensity laser and very brilliant γ beams

ELI-NP in 'Nuclear Physics Long Range Plan in Europe' as a major facility

NP laboratory building

Platform supported on dampers

Anti–vibration platform ±1 μm @ < 10 Hz

Thermalized building 22° ± 0.5°

Clean rooms

civil construction was commissioned in September 2016

Nuclear

ELI-NP Gamma Beam System (GBS)

Gamma Beam System

low-energy accelerator section: 0.2-3.5 MeV factory acceptance in Dec. 2015

high-energy accelerator section: 3.0-19.5 MeV

Electron beam parameter at IP			
Energy (MeV)	180-750		
Bunch charge (pC)	25-400		
Bunch length (µm)	100-400		
ε _{n_x.v} (mm-mrad)	0.2-0.6		
Bunch Energy spread (%)	0.04-0.1		
Focal spot size (µm)	15-30		
# bunches in the train	> 31		
Bunch separation (nsec)	16		
energy variation along the train	0.1 %		
Energy jitter shot-to-shot	0.1 %		
Emittance dilution due to beam	< 10%		
breakup 496ns			
Time arrival jitter (16ns	< 0.5		
Pointing jitter (µm)	1		
	\longrightarrow t		
10ms 10ms			

Nuclear Physics

Fuise energy (J)	0.2	0.5
Wavelength (eV)	2.4	2.4
FWHM pulse length (ps)	2-4	2-4
Repetition Rate (Hz)	100	100
M ²	≥ 1.2	≥ 1.2
Focal spot size w ₀ (μm)	> 25	25
Bandwidth (rms)	0.05 %	0.05 %
Pointing Stability (µrad)	1	1
Sinchronization to an ext. clock	< 1 psec	< 1 psec
Pulse energy stability	1 %	1 %

et Experiments with high-brilliance gamma beams at ELI-NP

Nuclear Physics

S. Gales et al., Phys. Scr. 91, 093004 (2016)

Nuclear Resonance Fluorescence (NRF) – Rom. Rep. Phys. 68, S483 (2016) Giant/Pigmy Resonances (GANT) – Rom. Rep. Phys. 68, S539 (2016) Photodisintegration (γ ,n), (γ ,p), (γ , α) – Rom. Rep. Phys. 68, S699 (2016) Photofission (γ ,ff) – Rom. Rep. Phys. 68, S621 (2016) Applications – Rom. Rep. Phys. 68, S735 (2016), *ibid* 68, S799 (2016), *ibid* 68, S847 (2016)

Rom. Rep. Phys. 68, S483 (2016)

ELI-NP NRF physics cases

- Self-absorption measurements (Γ_0/Γ_i)
- Low-energy dipole response (e.g. Actinides)
- Dipole response and parity measurements for weakly-bound nuclei
- Investigation of the Pigmy Dipole Resonance
- Rotational 2⁺ states of the scissor mode
- Constraints on the $0\nu\beta\beta$ -decay matrix elements of the scissors mode decay channel: ^{150}Sm

Sensitivity frontier

week channels

Rom. Rep. Phys. 68, S539 (2016)

Nuclear Physics

30 LaBr₃ or CeBr₃ 20 ⁷Li glasses 30 Lq. Scint.

Day ONE: studies of GDR and PDR decay (⁹⁰Zr, ²⁰⁸Pb)

- combine with information from (γ,n) experiments
- combine with information from (γ,γ') experiments (*e.g.* polarization)
- γ-decay to gs and excited states as a function of excitation energy

Neutron stars, equation of state and dipole polarizability @ELI-NP

-Neutron stars (NS) properties depend sensitively on the equation of state (EOS) of nuclear matter -EOS can affect many NS properties: mass-radius relationship, moment of inertia, cooling rates, Urca process, ... -It has been suggested that the slope (L) of the symmetry energy term of the EOS is closely related to the dipole polarizability α_n through the neutron skin thickness [1,2,3]

ELI-NP: experimental photo-nuclear reaction facility - The dipole polarizability is obtained from the photo-absorption cross section

$$\alpha_{D} = \frac{\hbar c}{2\pi^{2}} \int_{0}^{\infty} \frac{\sigma_{abs}}{\omega} d\omega = \frac{8\pi}{9} \int_{0}^{\infty} \frac{dB(E1)}{\omega}$$

-Strongly dependent on the low-energy strength, e.g. Pygmy resonance (see also FIG. 2) -ELI-NP will provide (accurate and unambiguous) measures of E1 strength below and above the neutron-threshold -Model independent results: pure electromagnetic excitation process

[1]P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C81, 051303® (2010) [2] J. Piekarewicz, Phys. Rev. C83, 034319 (2011) [3] X. Roca-Maza et al., Phys. Rev. Lett.106,252501 (2011)

RCNP Osaka vs. ELI-NP experiments

RCNP

High-resolution (p,p') measurement at 0^o and forward angles A. Tamii, NIM A605, 326 (2009)

ELI-NP

High-resolution $(\gamma, \gamma') + (\gamma, n)$ measurement

<u>advantages</u>: polarized (>99%) γ beam simultaneous (γ , γ') + (γ ,n) measurement

Rom. Rep. Phys. 68, S539 (2016)

(γ,n) cross-section experiment at ELI-NP

Nuclear Physics

P-PROCESS NUCLEOSYNTHESIS FOR ¹⁸⁰Ta AND MEASUREMENTS OF THE PHOTO-NEUTRON CROSS SECTION

¹⁸⁰Ta characteristics

➤ Lowest natural abundancy (0.012%)
➤ Short-lived (T_{1/2} = 8.15h) J^π = 1⁺ ground state (¹⁸⁰Ta^g)
➤ Very long-lived (T^{1/2} > 10¹⁵ yr) J^π = 9⁻ isomeric state (¹⁸⁰Ta^m)
➤ ¹⁸¹Ta(y,n)¹⁸⁰Ta and ¹⁸⁰Ta(y,n)¹⁷⁹Ta photo-disintegration reactions

NuPECC LOng Range Plan 2016-2020 – Astrophysics

- Correct prediction of the ¹⁸⁰Ta^m yield highly requires both ¹⁸¹Ta(y,n)¹⁸⁰Ta and ¹⁸⁰Ta(y,n)¹⁷⁹Ta cross section measurements.
- The measurements for the (y,n) cross sections related to the p-nuclides destruction requires gamma ray beam three orders of magnitude higher than the existing ones.
- Measurements of the ¹⁸⁰Ta(y,n)¹⁷⁹Ta reaction are foreseen in the Day 1 experiment at ELI-NP facility by using the maximum available gamma ray energy of 19 MeV.

ELITPC

flagship experiment: ${}^{16}O(\gamma, \alpha){}^{12}C$

Detector upside-down view

The mini-eTPC detector with 256-channel readout was built and successfully tested in-beam at the IFIN Tandem in 2016

nuclear astrophysics with ELISSA

ELISSA:

- 3 rings of 12 position sensitive X3 silicon-strip detectors by Micron
- 2 end cap detectors from 4 QQQ3 segmented detectors by Micron
- 320 channels readout with GET electronics

⁷Li(γ,t)α

- reaction could still be a game changer in resolving the "Li problem"
- experimental measurements below 1.5 MeV are 30 yrs. old and disagree with theoretical predications
- higher energy measurements can restrict the extrapolation to astrophysically important energies

C. Matei et al., exp. at HI γ S approved by the 2016 PAC

DSSD testing at ELI-NP

- X3 detector tests at INFN-LNS in Feb 2016
- energy thresholds at 300 keV
- measured energy, position resolution
- responsible: INFN LNS and ELI-NP

- all 40 X3 detectors tested at IFIN 08-11/16
- analog DAQ developed at ELI-NP
- responsible: ELI-NP

- geometry updated in GEANT4 by INFN LNS
- GET electronics under development by INFN LNS

INFN LNS Catania and ELI-NP

Rom. Rep. Phys. 68, S621 (2016)

Photofission: Physics goals

- High-resolution photo-fission studies in actinides as a function of the photon energy → study of the fission resonances, investigation of 2nd, 3rd potential minima, mapping the fission barrier
- Angular distribution measurements for the fission fragments. → Study of the J^T and K-values of the resonances
- Mass and charge distribution measurements for the fission fragments → study of the clusterization before fission
- Study of the ternary fission probability as a function of the photon energy → direct proof for highly deformed states
- 5. Study of the true ternary fission. \rightarrow clusterization

see also ELI-NP White Book: contributions of P. Thirolf and D. Habs

Nuclear Physics Transitional Resonances: Status

Setup-1 : ELITHGEM

✓ Measurement of fission cross section

 Measurement of angular distribution of fission fragments

Multi-target detector array consisting of position sensitive gas detector modules based on the state-of-art THGEM technology

Setup-1 : ELITHGEM

Entire setup : Array of 12 detectors

Delay-line readout anode

Set-up 2: The ELI-BIC array

alomki.

Mylar foi

PCB holde

bronze disk

7 cm

DSSD

2 cm

- Bragg Ionization Chamber:
- -Based on the design of a Frisch grid twin ionization chamber
- –1 bar P10 gas mixture \rightarrow 3.5 cm range for fission fragments (SRIM)
- -Fissile sample in the center of the cathode
- -Electrodes: d=8 cm metal disks and stainless steal mesh (Frisch grid)
- -Field rings: stainless steal wires with a diameter of 0.5 mm
- $\Delta E E$ array:
- -DSSD (MicronSemiconductor Design W1) + small ionization chamber
- -Dimensions: 50x50 mm2
- -Ionization chamber

DSSD W1

In-beam Test Experiment of one Ionization Chamber coupled with 1 dE-E detector array [cold neutron beam on ²³⁷Np target]

Test performed at Budapest Neutron Centre

Rom. Rep. Phys. 68, S621 (2016)

Photofission experiments at ELI-NP

BIC prototype tested with sources and in-beam

<u>Conclusion</u>: The designed dE-E array is effective for the α detection

Rare fission modes: Ternary fission

at ELI-NP detailed studies of rare fission modes will be possible

angular difference of fission α particle yield distribution fragments in ternary fission

P. Heeg et al., NIM A 278, 452 (1989) spontaneous fission of ²⁵²Cf

ALTO, ARIEL, etc.

ELI-NP

IGISOL beamline: Location

Location 1:

- CSC at 7m from IP \rightarrow A \approx 0.7cm
- maximum CSC length 1.5m
- crowded exp hall!

Location 2:

- CSC at 40m from IP \rightarrow A \approx 4cm
- plenty of space!

Next phases of ELI-NP

Rom. Rep. Phys. 68, S621 (2016)

IGISOL facility at ELI-NP

Expected Rates

Rom. Rep. Phys. 68, S699 (2016)

Conservative "day-one": beam $5 \cdot 10^{10} \text{ y/s}$, target release eff. 25%, CSC extraction eff. 50% $\rightarrow \sim 10^7$ photofissions/s and $\sim (0.8-2) \cdot 10^6$ extracted ions/s

Optimal estimate: beam $10^{12} \gamma/s$, twice CSC extraction eff. \rightarrow expect ~2 orders of magnitude more!

P. Constantin et al, NIM B 378, 78 (2016), ibid (2016) submitted

CSC Simulations: Fragment Slowing Down in the Gas Cell

Geant4: He, T=70K, p=300mbar (ρ =0.206mg/cm³) \rightarrow >95% of fragments stop in

CSC Simulations: Space Charge (I)

Divide CSC in 1x1x1 cm³ cells: 24x24x100 for $\rho=0.21$ mg/cm³, 40x40x100 for $\rho=0.12$ mg/cm³, 90x90x100 for $\rho=0.05$ mg/cm³;

Cummulate dE/dx deposited in 1s of beam and divide by W_i=41 eV.

CSC Simulations: Space Charge (II)

Q is not the best parameter.

$$V_{ind} = d^2 \sqrt{\frac{eQ}{4\varepsilon\mu}}$$

 $\begin{array}{l} d = distance \ between \ parallel \ electrodes \\ \epsilon = electrical \ permitivity \\ \mu(T,p) = ion \ mobility \\ Universal \ threshold \ at \ V_{ind}/V {\approx} 1{\text -}2. \\ Field \ saturation \ sets \ in \ for \ V_{ind}/V {>}1. \end{array}$

Supported by theoretical calculations: S. Palestini et al., NIM A 421 (1999) 75 S. Purushothaman et al., NIM B 266 (2008) 4488

However, for our CSC: $Q(r,\phi,z)$ inhomogeneous! \rightarrow moving to SIMION!

Rom. Rep. Phys. 68, S799 (2016)

NRF applications at ELI-NP

- Two tomography tables with biaxial movement and rotation
- Various collimators with collimation holes between 0.2 mm and 5 mm.

High volume detector for pencil-beam

2D detector for conebeam: CCD based gammaray camera or 2D flat panel

Industrial Radiography and Tomography

The European initiative for Extreme Light Infrastructure laboratories in Romania (ELI-NP), will shortly provide tunable energy y-rays from inverse Compton scattering of laser light on a high-energy electron beam. This will allow Nuclear Resonance Object Witness foil Fluorescence studies of isotope-specific ELI-NP element distributions to be trace γ beam with performed unprecedented sensitivity. It is planned to use this Transmission powerful tool for cultural heritage object detector studies.

Rom. Rep. Phys. 68, S849 (2016)

Medical radioisotopes at ELI-NP

test case

•¹⁹⁵mPt: In chemotherapy of tumors it can be used to exclude "non responding" patients from unnecessary chemotherapy and optimizing the dose of all chemotherapy

feasibility study: Wen Luo et al., Appl. Phys. B 122, 8 (2016)

Human Resources

http://www.eli-np.ro/jobs.php

Sectoral Operational Programme "Increase of Economic Competitiveness" "Investments for Your Future!"

Extreme Light Infrastructure - Nuclear Physics (ELI-NP) - Phase II www.eli-np.ro

Project co-financed by the European Regional Development Fund

Thank you!