Search for X-ray photon-photon elastic scattering with a Laue-case beam collider

Tomohiro Yamaji

T. Inada^A, T. Yamazaki^A, T. Namba^A, S. Asai, T. Kobayashi^B, K. Tamasaku^C, Y. Tanaka^D, Y. Inubushi^E, K. Sawada^C, M. Yabashi^C, T. Ishikawa^C, T. Takahashi^F, S. Watanabe^F, G. Sato^G

<u>The Univ. of Tokyo</u>, ICEPP^A, KEK^B,RIKEN/SPring-8^C,Univ. of Hyogo^D, JASRI^E, ISAS/JAXA^F, Univ. of Waseda^G

LNPC'17@yokohama 21th, April, 2017

Photon-photon scattering

- ◆Photon-photon scattering
 - Quantum ElectroDynamics(QED) predicts
 elastic scattering of photons in vacuum (1936)
 =nonlinear effect of vacuum
 - •The contribution of virtual photon scattering is inclusively observed: Delbruck scattering, e/μ anomalous magnetic moment
 - The scattering of real photons has not ever been observed
 →important verification of QED

 If unknown particles which mediate the scattering exist, scattering cross section can be enhanced by the prediction of QED

→new physics ex)Axion Like Particles(ALP)

Summary of previous experiments

- cross section (QED) is proportional to 6th power of photon energy
- *All previous experiments use visible or infrared sources
- •The best upper limit is 18 orders of magnitude worse than the prediction of QED

New experiment using X-ray source

- *X rays have 4 orders of magnitude higher energy than visible photons
- →Cross section is enhanced by 24 orders of magnitude
- *X-ray detectors with high energy precision improve S/N ratio
- ■X rays have smaller diffraction limit → beams can be focused more strongly
- X-ray region (~10keV) is new to particle physics experiments → interesting!

X-ray source : SACLA

• the strongest X-ray Free Electron Laser(XFEL) in the world

- **♦**Specs
- pulsed source with the photon flux of $\sim 6 \times 10^{11}$ photon/pulse and the duration of < 10 fs
- •beam width: 200μm(FWHM), and 1μm coherent focusing is available
- →suitable for scattering experiments with high luminosity
- •repetition: 30 Hz @ 2015 November
- X-ray energy: 10.985keV with the bandwidth of 80 eV

X-ray collision system (1/2)

- *X-ray diffraction is used to split X-ray beams and to make them collide This technique is developed in X-ray interferometry region
- ◆X-ray beam collider
- Laue-case X-ray diffraction at silicon crystal is used
- •The collider consists of three blades (t 0.2mm) manufactured on a single mono-crystal

X-ray collision system (2/2)

- X-ray collision is spatially and temporally guaranteed by a geometrical symmetry
- The pulse-by-pulse intensity of colliding beams are measured by PIN photodiodes

Suppression of stray X rays: vacuum chamber

- •Signals are very weak even if they exist \rightarrow suppression of stray X rays is essential!
- •To suppress stray X rays from atmospheric molecules, collider is installed into a vacuum chamber
- •Collimators are installed along the X-ray path to cut the path of stray X rays scattered by the collider
- \rightarrow The detection rate of stray X rays is reduced to 10^{-13} of injected X rays,

and measurement without pseudo signals is achieved!

Measurement of beam widths

Beam widths is measured by edge scan

1)vertical (not focused): a stainless rod

2)horizontal ($1\mu m$ focused) : ϕ 200 μm golden wire

•horizontal width (σ): $0.962 \pm 0.037 \mu m$ (RR)

 $0.992 \pm 0.044 \mu m$ (TR)

vertical widths : $144 \pm 12 \mu m$ (RR)

 $124\pm7\mu m$ (TR)

Measured X-ray spectrum

- •newest measurement (*Phys. Lett. B 763 (2016) 454*)
- •measurement period: 30 Hz \times ~38 hour DAQ = 4.1 \times 10⁶ X-ray pulses
- •timing window: detector timing resolution $\pm 5\sigma = \pm 0.4 \mu s$
- No significant signal is observed

Measured X-ray spectrum (scatter plot)

O: 1 event

- ◆ Potential source of pseudo signals
- 1)pileups of two stray X rays (<22keV)
- 2)accidental coincident of environmental X rays (18~20keV)
- pseudo signals are expected to< 1 event

Results

- •upper limit (PLB 2016) on the cross section : 1.9 × 10⁻²⁷ [m²] @ 6.5keV (95% C.L.)
- This is the unique/most stringent upper limit in X-ray region

Results

- The upper limit is 20 orders of magnitude worse than QED prediction
- In order to enhance the sensitivity and approach to the QED prediction, it is essential to change the experimental setup drastically
- Diffraction efficiency is very small ($^{\sim}10^{-5}$ of raw beam $\rightarrow 10^{-10}$ sensitivity reduction)
- →Experiment without diffraction is needed!

dream plan: SACLA+SACLA head-on collision

- Experiment without diffraction requires an additional X-ray source
- If another SACLA exists in front of SACLA,
 can photon-photon scattering be observed? (thought experiment)
- •head-on collision of X-ray pulses with 10¹² photon/pulse
- 50nm focusing (horizontal/vertical) can be used for head-on collision
 →1 photon-photon scattering per 60Hz 2 day DAQ
- In principle, X-ray collision can be observed by head-on collision of 2 XFELs
 →ultimate goal of scattering experiments in X-ray region

realistic setup: SACLA+SPring-8

- ◆SACLA+SPring-8 head-on collision
- SACLA EH5: simultaneous usage of SACLA and SPring-8 BL32
 Synchronized operation will be developed in the near future → realistic setup
- •SPring-8: ~10³ photon/pulse, 40MHz, 40ps (pulse intensity is 10⁻⁹ of SACLA)
- The head-on collision experiment with 50nm focusing at EH5
- \rightarrow sensitivity enhancement of 10^{11} by 60 Hz 2 day DAQ (10^9 worse than QED prediction)
- more realistic than SACLA+SACLA : next step

Summary of prospects

- •current upper limit : 20 orders of magnitude worse than QED prediction
- SACLA+SACLA: QED prediction can be verified (in principle)
 - : ultimate goal of photon-photon scattering experiment in the X-ray region
- •head-on collision of SACLA and SPring-8: sensitivity can be enhanced by 1011

Summary

- We are performing particle experiments using photons
- Photon-photon scattering of real photons has not ever been observed
 : important verification of QED
- We have performed first scattering experiment in X-ray region
- *X-ray diffraction is used to split X rays and make them collide
- Background X rays are suppressed to perform 0-pileup experiment
- •The upper limit on cross section is 10^{20} worse than QED prediction : drastic change of experimental setup is necessary
- •SACLA+SACLA: sensitivity can approach to QED prediction in principle : ultimate goal of X-ray photon-photon scattering experiment
- •head –on collision of SACLA and SPring-8: sensitivity is enhanced by 10¹¹: next step

backups

SACLA optical Laser systems

- SACLA has <u>TW/PW optical Laser systems</u>
- Now 2.5TW Laser is available
- •PW (500TW × 2) Laser system is under installation
- →strong source with ~10²⁰photon/pulse suitable for photon-photon scattering

THALES PW Lase (under installation)

specs	Hidra-100 2.5TW	THALES 500TW × 2
wavelength	800nm	
pulse intensity	100 mJ =4 × 10^{17} photon/pulse	12.5 J =5 × 10 ¹⁹ photon/pulse
duration	40fs	10fs
repetition	10Hz	1Hz

photon² scattering with 4 wave mixing

- four wave mixing(nonlinear effect of vacuum)
- stimulating beams are injected to the cross point
- signal intensity is enhanced by the photon num of stimulating beam → huge enhancement ~10²⁰
- •photon-photon scattering can be observed by three PW Lasers + 1 day DAQ
- the suppression of stray photons is problematic

四光波混合信号数

波混合信号数 ビーム強度の掛け算
$$N_{4,QED}=\epsilon_{PM}\epsilon_{Spec}\epsilon_{Osc}rac{16}{2025}\left(rac{2}{\pi\sqrt{3}}
ight)^3rac{\omega_4E_1E_2E_3}{m_e^4}rac{r_e^4}{\omega^2 au^2}K^2$$

sensitivity loss of current setup

- ◆losses/disadvantages due to X-ray diffraction
- 1)small acceptable bandwidth + diffraction efficiency (~10-5)
 - →sensitivity is reduced by 10⁻¹⁰
- 2)X-ray beams cannot be focused in the diffraction plane \rightarrow luminosity is reduced by 10⁻²
 - →reduction factors are combined to be 10⁻¹²
- 3) energy sweeping is impossible due to diffraction condition

→scattering experiments without X-ray diffraction is needed!

efficiency: 2.48%

efficiency: 1.55%

collider

injected X rays within acceptable bandwidth: <u>10⁻³</u> horizontally focused

Background X rays

- suppression of background X rays is inevitable for high sensitivity
- **◆**Background sources
- Environmental X rays: easily excluded by timing measurement
- stray X rays (Rayleigh/Compton) scattered by atmospheric molecules/collider
- →pileups of stray photons can be misidentified as signals

Geant4 Monte Carlo simulation

sensitivity loss of current setup

- ◆losses/disadvantages due to X-ray diffraction
- 1)small acceptable bandwidth + diffraction efficiency (~10⁻⁵)
 - →sensitivity is reduced by 10⁻¹⁰
- 2)X-ray beams cannot be focused in the diffraction plane (vertical) \rightarrow luminosity is reduced by 10^{-2}
 - →reduction factors are combined to be 10⁻¹²
- 3) the photon energy in cms system is fixed by the diffraction condition (sweeping is incapable)

→scattering experiments without X-ray diffraction is needed!

efficiency: 2.48%

efficiency : $\frac{1.55\%}{2\theta_B}$

injected X rays within acceptable bandwidth: <u>10⁻³</u> horizontally focused

Summary of previous experiments

• cross-section (QED prediction) for photons with the same linear polarization state $(\omega_{cm} < 700 \text{ keV})$

$$egin{array}{lll} \left(rac{d\sigma}{d\Omega}
ight)_{
m linear, same} &=& rac{lpha^4 \underline{\omega_{
m cm}}^6}{(180\pi)^2 m_e^8} (260 {
m cos}^4 heta + 328 {
m cos}^2 heta + 580 \ \sigma_{
m linear, same} &=& 3.5 imes 10^{-70} (\underline{\omega_{
m cm}} [{
m eV}])^6 [{
m m}^2] \ \left(imes {
m photon energy}^6
ight) \end{array}$$

 $\begin{array}{l} \text{photon energy } \omega_{\text{cm}} \\ \text{@center of mass system} \end{array}$

- All previous experiments use visible or infrared sources
- •The best upper limit is 10¹⁸ higher than the prediction of QED
- disadvantages in using visible/infrared sources
 - •Cross section in the visible region is strongly suppressed(\propto photon energy⁶)
 - White stray photons generated within optics deteriorate S/N ratio and sensitivity

Particle experiments using Photons

- There are many phenomena which cannot be explained by the Standard Model(SM)
 ex) dark matter/energy, the asymmetry of matter and antimatter
- →We need new physics beyond SM, but the energy scale is much higher than energy accelerators can generate
- ◆ Particle experiments using photons
- strong and dense field can be more easily produced by strong light sources
 →searches for new physics with higher energy scale
- To search variety of new physics,
 searches using various photon sources
 are effective

```
1)Laser + magnetic field: S. Kamioka (11:35~)
```

2)Laser + X-ray: Y. Seino (11:55~)

3)X-ray + X-ray: This talk

Optics

Vacuum chamber schematics

Kinematics

-X-ray diffraction uses Si(440) lattice plane crossing angle : $2\theta_B$ =72° for 10.985 keV $\rightarrow \omega_{CM}$ =6.46keV

◆ブースト系での散乱実験

X-ray interferometer

- U. Bonse and W. Graeff, X-ray Optics, Springer-Verlag, 93 (1977)
- A. Appel, et al, Phys. Rev. Letters, 67, 1673 (1991)
- •Interferometry fringe can be seen by the analyzer blade
- →collision is guaranteed

Ge detector

Canberra BE2825

Am241 spectrum

-resolution(σ): <u>0.2 keV@ 26.3keV</u> calibration change during measurement: < <u>0.1keV@ 17.7keV ~ 26.3keV</u>

-signal energy (raw): 18.1-19.9keV

calibration: 0.1keV, 2σ =0.4keV is included to the energy region

→energy region: 17.6 -20.4keV

-detection efficiency of signal X rays: $13.2 \pm 0.3\%$ (Geant4)

enhancement of cross section by new physics

ALP(Axion Like Particle)interact with two photons by anomaly

- cross section
- D. Bernard, Nuovo Cimento, A 110, 1339(1997)
 - •non-resonant : less than QED
 - huge enhancement on the mass pole (determined by Breit-Wigner formula)

$$\sigma_{BW} = \frac{\pi}{4k^2} \frac{\Gamma^2}{(2k - m_a)^2 + \frac{\Gamma^2}{4}}$$

maximum : π/k^2 2.9 × 10⁻²¹ [m²] @ 6.46keV

chamber inner side

detector-side flange

