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Nucleosynthesis
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Gamma-process

Supernova explosion: S.E. Woosley et al., ApSJ 36, 285 (1978)
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This is first evidence for p-nucleus origin in supernovae




Discovery of the empirical scaling law

T. Hayakawa et al.,

27 pairs of s- and p-nuclel
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Phys. Rev. Lett. 93, 161102, (2004).

Taking N(s)/N(p) taios,
where N is the isotope abundance.
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This the second evidence of supernova gamma-process




Supernova neutrino-process

S.Woosley, ApJ (1990) has proposed supernova neutrino-process as
the origin of several heavy isotopes.

_ A. Heger, PLB (2005)
Neutrinos Calculate synthesis of 1B, 19F, 138|_a, 180Tg
H . but 189Ta can not be reproduced.

Neutrinos

He 7Li. 1B, T. Yoshida, PRL (2005,2006)
Synthesis, neutrino energy spectra
C/O
O/Ne 138 3, T, Hayakawa, PRC (2008, 2009)
S| Possibility of isomer
Fe 180Tq, T. Hayakawa, PRC (2010a, 2010b)

Reproduced both of 138La and 180Ta
92Nb, T. Hayakawa, ApJL (2013)
Neutron Star Origin of 92Nb in meteorites



Neutrino-Nucleus Reactions
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Flow of nucleosynthesis
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Gamma-rays have important roles for gamma and neutrino processes.



Interaction between Photons and Nuclei
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Energy

Interaction between nuclei and
photons in hot temperature
environments

_ Photodisintegration reaction
Excited states
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Cross section measurements

The cross section has been measured as a

Photo-Nuclear Reaction rate
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In stars, the integrated reaction rate is
essential physics input.
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T. Shizuma, Phys. Rev. C, 72, 02580 (2005)

Using laser Compton scattering
gamma-rays



Direct measurement of integrated
Neutrons reaction rate

Proton Kinematically
Beam Collimated Neutron Beam . Meastired

TargelJ/ -
=

/ IH
—_ - e i " S
-\ . f

The neutron beam which energy

Thermal distribution is similar to stellar one.
/ spectrum for
- KT=25keY

I L

N
Neutron
Sample between Moaltor A ——— |
Gold Fofls 0 20 40 60 60 100 120
Neutron Energy [keV] Sum of Bremsstrahlung with
Neutrons are generated by (p, n) reactions different energies
The energy is tuned by absorber and scattering angles \ohr, PLB, 2000
Stellar photon distribution NG -
= — F_; ?\\ \E}'pic;tl {~p) threshold ]
2 F sl | 5
o = e e { IJ}'|;:ca!h o
£ Thermal Plank ) . = e Y T eSO
S [ Simulation € N
5 Spectrum T ¥ B
5 L | R -
LL » -
Energy ) | I
] SO0 10000

E ike¥)



Proposal of direct measurement of
photo-nuclear reaction rate in stars



Laser-driven y-ray source via radiation reaction effect

expanding plasma

laser pulse

high energy
electrons

Calculated by T. Nakamura
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Laser-driven y-ray beam is intense, short and well-collimated

Calculated by T. Nakamura
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Bremsstrahlung by Maxwell
distribution electrons
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Calculated gamma-ray energies

Generated Bremsstrahlung gamma-rays
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Cross section on excited states
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Stellar reaction rate
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Candidates

Neutrino process
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Two-pulse method by Kotaki-san

Main target to Isotope target of astrophysical
generate interest
gamma-rays Excited nuclei by x-ray
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Estimation by Nakamura-san

The excited state at 109 keV has a half-life of 0.59 ns. If the life of the plasmais
long than 0.59 ns, this state can be populated.

When the target absorb the laser pulse with an energy of 1 J, the life of the plasma
with L = 10 um and electron density of 10724 and an average energy of 100 keV, the
life of the plasma is approximately 100 fs.

e

0.59 ns is too long

We need a pre-pulse with pulse width longer than ns.



Experiment using fusion laser

Main target

Excited nuclei by x-ray
absorption and

5. Neutron,
proton, etc.

3. Main pulse

High power and long duration pulse is a key
point.



Transition probability between the
ground state and isomer



Problem of Isomer Ratio
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 The two states are linked by (gamma,gamma’) reactions.
« Transition rate is determined by the temperature.
 The isomer residual ratio depends on the change of the temperature.

Previous two studies (Heger, 2005, Byelikov, 2007)
pointed out that they can not calculate 89Ta abundance until the

iIsomer residual ratio is determined.




Isomer Ratio
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T. Hayakawa et al., Phys. Rev. C 81, 052801(R) (2010)



Isomer in ?2Nb

There is an isomer at 136 keV in 2Nb, which beta-decays away

with a half-life of only 10 d.
Y  Mohr, PRC, 2016
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Mohr calculated the transition rate between the isomer and the

ground state using a thermal equilibrium model.
The result is that the isomer does not affect.



Detection techniques

Pulsed gamma-ray should be converted to particles, of which energy
distribution can be measured.



Activation methods

Gunthe Phys PIas 2011
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Sakata RSI (2014)
Cross section of (gamma, n) reactions of various materials

In stellar reaction rate, the threshold is critical.
In the case of bremsstrahlung and narrow energy photons, the peak energy of GDR is
important.

Deuterium cannot produce unstable isotopes.
Lead is the lowest energy among GDR.



Activation by neutrons following
(gamma, n) reactions

Gamma-rays are converted to neutrons by (gamma, n) reactions.
Neutrons are measured by bubble detector after slowdown by polyethylene.
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FIG. 2. Schematic of the x-ray spectrometer covering a photon energy range
of 10-20 MeV. Five-millimeter-thick cylindrical converters made of lead,
iron, and aluminum cover the bubble detectors those have the same threshold
energy (0.6 MeV). Uncovered bubble detectors are also allocated to measure

the background signal.
Sakata et al. Rev. Sci. Instrum. 85, 11D629 (2014)

This method has an advantage that they can use a material cannot produce radioisotope.



Time-of-flight to measure neutrons following
(gamma, n) reactions
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Summary

Photons play important roles in stellar nucleosynthesis
including gamma-process and neutrino-process.

Continues gamma-ray energy is an advantage to simulate
stellar environments.

The short pulse is effective to study explosive
nucleosynthesis in supernovae

A key point is how to generate such gamma-ray pulse.

Proposals for nuclear astrophysics experiments using laser
driven gamma-ray pulse.

T. Hayakawa, et al. Quantum Beam Science, 1(1), 3 (2017).
“Explosive Nucleosynthesis Study Using Laser Driven y-ray Pulses”
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