
Femtocode: querying HEP data

Jim Pivarski

Princeton University – DIANA

April 17, 2017

1 / 40

Reminder of motivation

(The last time I presented this here was December 12.)

Query systems

In some industries, it is commonplace to query petabytes of data in
real time, usually with SQL. (Ibis, Impala, Kudu, Drill, etc.)

For us, this would mean being able to do final analysis directly on
collaboration-shared Analysis Object Datasets (AODs), without
managing private skims.

However, these systems don’t deal (well) with rich objects, like
arbitrary-length lists of jets containing tracks containing hits. . .

Femtocode

I’m developing a query system whose performance would permit
real-time analysis, but is capable of complex manipulations, such
as filtering tracks, picking pairs to compute invariant masses, etc.

2 / 40

Reminder of motivation

(The last time I presented this here was December 12.)

Query systems

In some industries, it is commonplace to query petabytes of data in
real time, usually with SQL. (Ibis, Impala, Kudu, Drill, etc.)

For us, this would mean being able to do final analysis directly on
collaboration-shared Analysis Object Datasets (AODs), without
managing private skims.

However, these systems don’t deal (well) with rich objects, like
arbitrary-length lists of jets containing tracks containing hits. . .

Femtocode

I’m developing a query system whose performance would permit
real-time analysis, but is capable of complex manipulations, such
as filtering tracks, picking pairs to compute invariant masses, etc.

3 / 40

Reminder of motivation

(The last time I presented this here was December 12.)

Query systems

In some industries, it is commonplace to query petabytes of data in
real time, usually with SQL. (Ibis, Impala, Kudu, Drill, etc.)

For us, this would mean being able to do final analysis directly on
collaboration-shared Analysis Object Datasets (AODs), without
managing private skims.

However, these systems don’t deal (well) with rich objects, like
arbitrary-length lists of jets containing tracks containing hits. . .

Femtocode

I’m developing a query system whose performance would permit
real-time analysis, but is capable of complex manipulations, such
as filtering tracks, picking pairs to compute invariant masses, etc.

4 / 40

Reminder of motivation

(The last time I presented this here was December 12.)

Query systems

In some industries, it is commonplace to query petabytes of data in
real time, usually with SQL. (Ibis, Impala, Kudu, Drill, etc.)

For us, this would mean being able to do final analysis directly on
collaboration-shared Analysis Object Datasets (AODs), without
managing private skims.

However, these systems don’t deal (well) with rich objects, like
arbitrary-length lists of jets containing tracks containing hits. . .

Femtocode

I’m developing a query system whose performance would permit
real-time analysis, but is capable of complex manipulations, such
as filtering tracks, picking pairs to compute invariant masses, etc.

5 / 40

Three interrelated parts

Language/compiler

I As familiar as possible to the user (objects, nested loops).

I But constrained to allow restructuring for fast execution
(total functions, map/filter/reduce instead of for-loops. . .).

I Extra-strength type system to eliminate runtime errors.

Execution engine

I Operate on contiguous columns of data, not objects.
“Restructuring objects” becomes changing arrays of integers.

I No memory allocation at runtime; vectorizable loops.

I JIT-compiled. CPU for now, but structure is right for GPU.

Distributed server

I Vending machine: queries go in, histograms (etc.) come out.

I Referential transparency eliminates the need of tracking users.
6 / 40

Langauge/Compiler

7 / 40

Start with a working example: dimuons
pending = session.source("ZZ_13TeV_pythia8")

.define(mumass = "0.105658") # chain of operations on source

.toPython(mass = """
muons.map(mu1 => muons.map({mu2 => # doubly nested loop over muons

p1x = mu1.pt * cos(mu1.phi);
p1y = mu1.pt * sin(mu1.phi); # shares scope with other steps
p1z = mu1.pt * sinh(mu1.eta); # in the chain (see "mumass")
E1 = sqrt(p1x**2 + p1y**2 + p1z**2 + mumass**2);

p2x = mu2.pt * cos(mu2.phi);
p2y = mu2.pt * sin(mu2.phi);
p2z = mu2.pt * sinh(mu2.eta);
E2 = sqrt(p2x**2 + p2y**2 + p2z**2 + mumass**2);

px = p1x + p2x; py = p1y + p2y;
pz = p1z + p2z; E = E1 + E2;

"if" is required to avoid sqrt(-x)
if E**2 - px**2 - py**2 - pz**2 >= 0:
sqrt(E**2 - px**2 - py**2 - pz**2)

else:
None # output type is nullable

}))
""").submit() # asynchronous submission to
final = pending.await() # watch result accumulate

Yes, we see the Z peak.

8 / 40

Taking this example apart (1/3)

I Femtocode always appears in quotes (like SQL). It is a
big-data aggregation step that feeds into a traditional analysis.

I A query is a “workflow” from source to aggregation, compiled
and submitted as one unit.
e.g. source("dataset").define(X).define(Y).histogrammar(Z)

I Most Femtocode snippets are tiny (hence “femto”), scattered
throughout a Histogrammar aggregation:
session.source("dataset")

.define(goodmuons = """...""") # define good muons

.filter("goodmuons.size >= 2") # cut on them

.define(dimuon = """...""" # define dimuons

.bundle(# plot their attributes
mass = bin(120, 0, 12, "dimuon.mass"),
pt = bin(100, 0, 100, "dimuon.pt"),
eta = bin(100, -5, 5, "dimuon.eta"),
phi = bin(314, 0, 2*pi, "dimuon.phi + pi"),

also plot the muons
muons = loop("goodmuons", "mu", bundle(

pt = bin(100, 0, 100, "mu.pt"),
eta = bin(100, -5, 5, "mu.eta"),
phi = bin(314, -pi, pi, "mu.phi"))))

9 / 40

Taking this example apart (2/3)

I Loop over pairs of muons is constructed by nesting functionals:
"muons.map(mu1 => muons.map(mu2 => f(mu1, mu2)))"

is equivalent to
list_of_lists = []
for mu1 in muons:

list_of_numbers = []
for mu2 in muons:

list_of_numbers.append(f(mu1, mu2))
list_of_lists.append(list_of_numbers)

return list_of_lists

I There will someday be more convenient forms: pairs,
table, filter, flatten, flatMap, zip,
permutations, etc.

(The dimuon example would ideally use pairs to avoid
double-counting and flatten to destructure the list-of-lists.
Or better yet, pick two by pT to get one candidate per event.)

10 / 40

Taking this example apart (3/3)

I Type system requires domain of sqrt to be guarded:
sqrt(E**2 - px**2 - py**2 - pz**2)

FemtocodeError: Function "sqrt" does not accept arguments with
the given types:

sqrt(real)

The sqrt function can only be used on non-negative numbers.

Check line:col 19:2 (pos 401):
sqrt(E**2 - px**2 - py**2 - pz**2)

------ˆ

To resolve this compile-time error, we write:
if E**2 - px**2 - py**2 - pz**2 >= 0:

sqrt(E**2 - px**2 - py**2 - pz**2)
else:

None

I The compiler tracks each subexpression’s interval of validity:
E**2 - px**2 - py**2 - pz**2 is limited to real(min=0, max=inf).

In the future, we could use SymPy to discover this algebraically.11 / 40

Another thing to notice

muons.map(mu1 => muons.map({mu2 =>

p1x = mu1.pt * cos(mu1.phi);
p1y = mu1.pt * sin(mu1.phi);
p1z = mu1.pt * sinh(mu1.eta);
E1 = sqrt(p1x**2 + p1y**2 + p1z**2 + mumass**2);

 only uses mu1

p2x = mu2.pt * cos(mu2.phi);
p2y = mu2.pt * sin(mu2.phi);
p2z = mu2.pt * sinh(mu2.eta);
E2 = sqrt(p2x**2 + p2y**2 + p2z**2 + mumass**2);

 only uses mu2

px = p1x + p2x;
py = p1y + p2y;
pz = p1z + p2z;
E = E1 + E2;

if E**2 - px**2 - py**2 - pz**2 >= 0:
sqrt(E**2 - px**2 - py**2 - pz**2)

else:
None


uses both.

}))
12 / 40

Femtocode minimizes computation

In most compilers, at least one of those two stanzas would be
needlessly recomputed for every pair of muons. Physicists have
learned to move these expressions out of the loop, possibly at the
expense of readability.

Femtocode’s compiler turns every loop over objects into vectorized
functions on individual fields. A by-product of this is that the
functions depending on just mu1 or mu2 decouple from the
functions depending on both.

In fact, all duplicate subexpressions are computed exactly once.
The only reason to use assignment is for clarity.

(It’s like an executable whiteboard.)

13 / 40

Execution engine

14 / 40

The dimuon example, after “compilation”

Sized by muons[]@size:
#0 := cos(muons[]-phi)
#1 := *(muons[]-pt, #0)
#2 := **(#1, 2)
#3 := sin(muons[]-phi)
#4 := *(muons[]-pt, #3)
#5 := **(#4, 2)
#6 := sinh(muons[]-eta)
#7 := *(muons[]-pt, #6)
#8 := **(#7, 2)
#9 := +(#2, #5, #8, 0.011164)
#10 := sqrt(#9)

type(#10) == real(0.105658, almost(inf))

Sized by #11@size:
#11@size := $explodesize(muons[], muons[])
#11 := $explodedata(#10, #11@size, (muons[]))
#12 := $explodedata(#10, #11@size, (muons[], muons[]))
#13 := +(#11, #12)
#14 := **(#13, 2)
#15 := $explodedata(#1, #11@size, (muons[]))
#16 := $explodedata(#1, #11@size, (muons[], muons[]))
#17 := +(#15, #16)
#18 := **(#17, 2)
#19 := -(#14, #18)
#20 := $explodedata(#4, #11@size, (muons[]))
#21 := $explodedata(#4, #11@size, (muons[], muons[]))
#22 := +(#20, #21)
#23 := **(#22, 2)
#24 := -(#19, #23)
#25 := $explodedata(#7, #11@size, (muons[]))
#26 := $explodedata(#7, #11@size, (muons[], muons[]))

#27 := +(#25, #26)
#28 := **(#27, 2)
#29 := -(#24, #28)
#30 := >=(#29, 0)
#31 := <(#29, 0)
#32 := -(#24, #28)
#33 := sqrt(#32)
#34 := if(#30, #31, #33, None)

type(#34) == union(null, real(0, almost(inf)))

muons[]-pt,
muons[]-phi,
muons[]-eta,
muons[]@size,
and everything that
starts with a # is (at
least conceptually) a
big array of values.

All functions except
$explode* would
make good GPU
kernels.

15 / 40

Freedom to choose the looping structure

t8 :=
t7 ⊗ t5

t9 :=
t8 ⊗ t4

t7 :=
t5 ⊗ t6

t5 :=
t3 ⊗ t2

t6 :=
t1 ⊗ t3

t4 :=
t1 ⊗ t2

t3 :=
t0 ⊗ t1

t0 :=
a ⊗ b t1 :=

c ⊗ d

t2 :=
e ⊗ f

fedcba

t9

a, b, c, d, e, and f
are all large arrays

t9 must also be a
large array

intermediate steps
need not be

(⊗ is some operation)

Suppose we have
this dependency
graph.

We are free to
choose where to
put the loops.

16 / 40

Freedom to choose the looping structure

t8 :=
t7 ⊗ t5

t9 :=
t8 ⊗ t4

t7 :=
t5 ⊗ t6

t5 :=
t4 ⊗ t2

t6 :=
t1 ⊗ t3

t4 :=
t1 ⊗ t2

t3 :=
t0 ⊗ t1

t0 :=
a ⊗ b t1 :=

c ⊗ d

t2 :=
e ⊗ f

fedcba

t9

foreach i:
 t0[i] := a[i] ⊗ b[i]
foreach i:
 t1[i] := c[i] ⊗ d[i]
foreach i:
 t2[i] := e[i] ⊗ f[i]
foreach i:
 t3[i] := t0[i] ⊗ t1[i]
foreach i:
 t4[i] := t1[i] ⊗ t2[i]
foreach i:
 t5[i] := t4[i] ⊗ t2[i]
foreach i:
 t6[i] := t1[i] ⊗ t3[i]
foreach i:
 t7[i] := t5[i] ⊗ t6[i]
foreach i:
 t8[i] := t7[i] ⊗ t5[i]
foreach i:
 t9[i] := t8[i] ⊗ t4[i]

At every step:

17 / 40

Freedom to choose the looping structure

t8 :=
t7 ⊗ t5

t9 :=
t8 ⊗ t4

t7 :=
t4 ⊗ t6

t6 :=
t1 ⊗ t3

t4 :=
t1 ⊗ t2

t3 :=
t0 ⊗ t1

t0 :=
a ⊗ b t1 :=

c ⊗ d

t2 :=
e ⊗ f

fedcba

t9

foreach i:
 t0 := a[i] ⊗ b[i]
 t1 := c[i] ⊗ d[i]
 t2 := e[i] ⊗ f[i]
 t3 := t0 ⊗ t1
 t4 := t1 ⊗ t2
 t5 := t4 ⊗ t2
 t6 := t1 ⊗ t3
 t7 := t5 ⊗ t6
 t8 := t7 ⊗ t5
 t9[i] := t8 ⊗ t4

t5 :=
t4 ⊗ t2

Around everything:

18 / 40

Freedom to choose the looping structure

t8 :=
t7 ⊗ t5

t9 :=
t8 ⊗ t4

t7 :=
t5 ⊗ t6

t5 :=
t3 + t2

t6 :=
t1 ⊗ t3

t4 :=
t1 ⊗ t2

t3 :=
t0 ⊗ t1

t0 :=
a ⊗ b t1 :=

c ⊗ d

t2 :=
e ⊗ f

fedcba

t9

foreach i:
 t0 := a[i] ⊗ b[i]
 t1 := c[i] ⊗ d[i]
 t2[i] := e[i] ⊗ f[i]
 t3 := t0 ⊗ t1
 t4[i] := t1 ⊗ t2
 t6[i] := t1 ⊗ t3
foreach i:
 t5 := t4[i] ⊗ t2[i]
 t7 := t5 ⊗ t6
 t8 := t7 ⊗ t5
 t9[i] := t8 ⊗ t4

t5 :=
t4 ⊗ t2

Or an intermediate
case:

Note that this
changes which
quantities are
arrays and which
are scalars.

19 / 40

What are the trade-offs?

Assuming the bottleneck
to be memory bandwidth
(usually true), more loops:

I increases number of
memory passes and

I sometimes decreases
number of arrays to
stride simultaneously.

Test of splitting 1 loop
over 64 variables into 64
loops over 1 variable
reveals a sweet spot of
about 2–32.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64
number of arguments per loop-function

ti
m

e
 t

o
 c

o
m

p
le

ti
o
n
 (

se
c)

64 16 8 4 2 1
number of loop function calls

laptop
CMS-LPC

CERN Techlab
Princeton McMillan2

Princeton KNL

20 / 40

Sometimes you don’t get to choose

Some vector operations have higher cardinality than others: e.g. a
loop over jets has more steps than a loop over muons.

Operations of different cardinality can’t be in the same loop, so
Femtocode divides the dependency graph into “plateaus.”

dependency order

lo
o
p
 s

iz
e

loop over muons

loop over jets

one result
per event

p
ic

k
b
e
st

p
ic

k
b
e
st

This cartoon example requires five loops (assuming each step
strictly depends on the previous).

Our dimuon example naturally splits into two loops: one over
muons (muons[]@size) and one over muons × muons (#11@size).

21 / 40

Sometimes you don’t get to choose

Some vector operations have higher cardinality than others: e.g. a
loop over jets has more steps than a loop over muons.

Operations of different cardinality can’t be in the same loop, so
Femtocode divides the dependency graph into “plateaus.”

dependency order

lo
o
p
 s

iz
e

loop over muons

loop over jets

one result
per event

p
ic

k
b
e
st

p
ic

k
b
e
st

1 2 3 4 5

This cartoon example requires five loops (assuming each step
strictly depends on the previous).

Our dimuon example naturally splits into two loops: one over
muons (muons[]@size) and one over muons × muons (#11@size).

22 / 40

Sometimes you don’t get to choose

Some vector operations have higher cardinality than others: e.g. a
loop over jets has more steps than a loop over muons.

Operations of different cardinality can’t be in the same loop, so
Femtocode divides the dependency graph into “plateaus.”

dependency order

lo
o
p
 s

iz
e

loop over muons

loop over jets

one result
per event

p
ic

k
b
e
st

p
ic

k
b
e
st

1 2 3 4 5

This cartoon example requires five loops (assuming each step
strictly depends on the previous).

Our dimuon example naturally splits into two loops: one over
muons (muons[]@size) and one over muons × muons (#11@size).

23 / 40

Three kinds of operations in each plateau

Explode: increase cardinality of one array
so that it matches another.
Determines the indexing of the
loop, so must be first.

a b c

1 2 3 4 5 6 7 8 9 10

{ { {a a a a a b b c c c

Flat: apply function to all members of
two aligned data arrays, ignoring
event boundaries. Intermediate
steps need not be arrays.

a b c d e f g h i j

1 2 3 4 5 6 7 8 9 10

Implode: combine results (sum, mean, max,
etc.) to reduce cardinality of an
array. Size of output arrays are not
constrained by the indexing of the
loop. Must be last.

1 2 3 4 5 6 7 8 9 10

{ { {

16 13 27

24 / 40

Representing objects as arrays (1/2)

Muon object schema:
muons = collection(record(

pt = real(0, almost(inf)),
eta = real,
phi = real(-pi, pi)))

Physical representation:
arrays_in = {

"muons[]-pt": [31.0960, 9.7620, 8.1769, ...,
5.2730, 4.7240, 8.5879], # (length 132274)

"muons[]-phi": [-0.4814, -0.1242, -0.1185, ...,
1.2469, -0.2067, -1.7541], # (length 132274)

"muons[]-eta": [0.8816, 0.9243, 0.9226, ...,
-0.9911, 0.9532, -0.2635], # (length 132274)

"muons[]@size": [7, 1, 4, ..., 4, 0, 1]} # (length 48131)

Dimuon run produces:
masses = collection(collection(union(null, real(0, almost(inf)))))

arrays_out = {
"#34": [0.2113, 6.2386, 5.7978, ...,

13.1108, 0.2113, 0.2113], # (length 584642)
"#11@size": [7, 7, 7, ..., 0, 1, 1]} # (length 180405)

25 / 40

Representing objects as arrays (2/2)

For simple collections of records (e.g. particles), these arrays have
the same interpretation as ROOT TLeaves:

I data arrays contain all values, ignoring event boundaries,

I size array contains the size of each event’s collection.

For collections of collections (with fixed, known depth), we can
extend this definition recursively:

Given: [[a b c] [d e f g]] [[h] [i j]]
Data array: a b c d e f g h i j
Recursive counter: 2 3 4 2 1 2

We know whether a number in the size array refers to the size of an
outer collection or an inner collection from a stack of countdowns.

26 / 40

Code generated for recursive counters
a fully general example: "xss.map(xs => xs.map(x => ys.map(y => x + y)))"

entry = 0 # entry index
deepi = 0 # depth of collection
countdown = [0, 0, 0] # stack of indexes
x_skip = [False, False] # handling zero x_size
y_skip = [False] # handling zero y_size

while entry < numEntries: # master loop
if deepi != 0:

countdown[deepi - 1] -= 1

if deepi == 0: # xss.map(xs => ...)
x_index[1] = x_index[0]
countdown[deepi] = x_size[x_index[1]]
x_index[1] += 1

if countdown[deepi] == 0:
x_skip[0] = True
countdown[deepi] = 1

else:
x_skip[0] = False

elif deepi == 1: # xs.map(x => ...)
x_index[2] = x_index[1]
if not xskip[0]:

countdown[deepi] = x_size[x_index[2]]
x_index[2] += 1

if countdown[deepi] == 0:
x_skip[1] = True
countdown[deepi] = 1

else:
x_skip[1] = False

elif deepi == 2: # ys.map(y => ...)
y_index[1] = y_index[0]
countdown[deepi] = y_size[y_index[1]]
y_index[1] += 1

if countdown[deepi] == 0:
y_skip[0] = True
countdown[deepi] = 1

else:
y_skip[0] = False

elif deepi == 3: # body of loop
deepi -= 1

if not x_skip[0] and not x_skip[1] \
and not y_skip[0]:
put "x + y" into output array

deepi += 1

while deepi != 0 and countdown[deepi - 1] == 0:
deepi -= 1 # "closing parentheses"

if deepi == 0:
x_index[0] = x_index[1]
y_index[0] = y_index[1]

elif deepi == 1:
x_index[1] = x_index[2]

if deepi == 0: # master loop iterates through
entry += 1 # deepest nesting level 27 / 40

Features of the event loop

I JIT-compiled for the specific nesting observed in query.

I Never allocates memory at runtime.

I Always two nested while-loops; the second only pops out of
the stack (could be replaced by JIT-compiled if-statements).

I Walk through data is controlled by stacks of fixed depth
(already replaced by JIT-compiled stack variables; 30% speedup).

I Memory access pattern is contiguous and usually forward,
though it sometimes jumps backward to emulate loops like

muons.map(mu1 => muons.map(mu2 => ...))

I Open question: would a version of this using recursion, rather
than a single loop with stacks, be faster?

I Generated as Python code (previous page), compiled by LLVM
into native machine code. (Easier to test in Python.)

28 / 40

Why size arrays instead of runtime objects?

1. To help LLVM and the hardware optimize memory bandwidth.

Simple operation on 806177 jet pT values (6.15 MB):

3 ms no-frills loop in C
7 ms Numpy’s implementation

14 ms full generality Femtocode event loop
24 ms allocating C++ objects on stack and iterating
64 ms allocating C++ objects on heap, iterating, deleting

518 ms TTree::Draw with TTreeCache
41900 ms CMSSW EDAnalyzer (disk access)

(Note: Femtocode should ultimately resemble the no-frills
loop in C. There’s work to be done.)

2. With no event boundaries in the data arrays, the “flat
functions” perfectly satisfy the criteria for GPU acceleration.

Thus, we could automatically translate high-level code on
physics objects into well-optimized GPU kernels!

29 / 40

Why size arrays instead of runtime objects?

1. To help LLVM and the hardware optimize memory bandwidth.

Simple operation on 806177 jet pT values (6.15 MB):

3 ms no-frills loop in C
7 ms Numpy’s implementation

14 ms full generality Femtocode event loop
24 ms allocating C++ objects on stack and iterating
64 ms allocating C++ objects on heap, iterating, deleting

518 ms TTree::Draw with TTreeCache
41900 ms CMSSW EDAnalyzer (disk access)

(Note: Femtocode should ultimately resemble the no-frills
loop in C. There’s work to be done.)

2. With no event boundaries in the data arrays, the “flat
functions” perfectly satisfy the criteria for GPU acceleration.

Thus, we could automatically translate high-level code on
physics objects into well-optimized GPU kernels!

30 / 40

Using ROOT functions in Femtocode
########## ROOT/some_library.py, somewhere visible to nodes on the Femtocode server.
import ctypes
libMathCore = ctypes.cdll.LoadLibrary("libMathCore.so")
chi2_ctypes = libMathCore._ZN5TMath17ChisquareQuantileEdd # c++filt!
chi2_ctypes.argtypes = (ctypes.c_double, ctypes.c_double)
chi2_ctypes.restype = ctypes.c_double

########## Creating a custom library (on the Femtocode client):
from femtocode.typesystem import *
from femtocode.lib.custom import *

def chi2_sig(x, n):
Compile-time type-safety: assert parameter types, provide return type.
assert isinstance(x, Number) and \

almost.min(0, x.min) == 0 and almost.max(x.max, almost(1)) == almost(1)
assert isinstance(n, Number) and n.whole and n.min > 0
return real(0, almost(inf))

custom = CustomLibrary() # module name symbol name signature
custom.add(CustomFlatFunction("chi2", "ROOT.some_library", "chi2_ctypes", chi2_sig))

########## Running a Femtocode query that uses this library:
from femtocode.run.execution import NativeTestSession
session = NativeTestSession()

Define a dataset with the right types and fill it with dummy data.
numerical = session.source("Test", x=real(0, almost(1)), n=integer(1, almost(inf)))
for i in range(100):

numerical.dataset.fill({"x": i / 100.0, "n": i + 1})

Femtocode calls TMath::ChisquareQuantile without involving Python at all.
result = numerical.toPython(out = "chi2(x, n)").submit(libs=[custom])
for entry in result:

print entry 31 / 40

Distributed server

32 / 40

Scaling up to full datasets

Exploratory data analysis requires turn-around times on human
timescales: seconds at most. If a query server takes much longer
than this, physicists will go back to private skims.

Scaling estimates for one query:

I Typically use a dozen or so samples, totaling O(10 TB).

I Every query runs over all events, but a single query rarely uses
1% of the columns. (Popularity distribution is steep.)

I In this early implementation of Femtocode, the worst query
response times were 30 ms/MB.

I Implies 3000 core-sec for that query: 3 seconds for 1000 cores.

33 / 40

Scaling up to full collaborations

Scaling estimates for multiple users:

I Most analyses have significantly overlapping needs. Evidence:
home-grown skimming frameworks (Bacon, Pandas, Cms3,
TreeMaker) select the same 10% of CMS MiniAOD.

I File I/O is more expensive than processing: ∼40 ms/MB
versus ∼2 ms/MB. Everyone wins if users share cache.

I 10% of 10 TB of samples is 1 TB, which easily fits in RAM
on a cluster of 1000 cores (hard to fit on one user’s machine).

I Short-lived queries are less likely to use resources at the same
time, so shortening latency also reduces contention.

The parameters of the final system depend on the hardware
allocated for it, but improving software can steepen the
performance per price.

34 / 40

Dividing the problem

Femtocode’s design philosophy is to do work up-front to streamline
the event loop. In the distributed server, managing subtasks is part
of this up-front work. Time to completion could be summarized as

time = C1 + C2(ncores) · Nsubtasks +
C3

ncores
· Nevents

I C1 is a constant, dominated by 70 ms of JIT-compilation time,

I C2(ncores) is the time spent managing subtasks, a complex
concurrent processes affected by Amdahl’s law.

I C3 is the part that actually executes the user’s query; it is
natively compiled and embarrassingly parallel.

The order parameter in this problem is Nevents. We get to choose
Nsubtasks/Nevents and can simply make partitions larger if the
Pythonic “data management” part becomes an issue.

35 / 40

Distributed system layout: as implemented

datadb:
original input data

from the experiments,
may be EOS/ROOT.

get input
data

get detailed

descriptions

get results

sa
ve

 re
su

lts

assign work

redire
ct

requests

for d
atase

t d
esc

rip
tio

ns

query and
progress

(same call)

compute:
performs calculations

in first-ready-first-serve
order, maintains an
input data cache,
sends results to

store.

dispatch:
assigns subtasks

to compute if not in
store, compiles code,

redirects metadb,
and aggregates

all results.

metadb:
responds to requests

for dataset descriptions
at client and compute

levels of detail.

client:
pure Python,

part of the base
Femtocode
package.

create new
tables for

users to query

store:
saves partial results
for a specified length

of time (days or weeks).
Lets users repeat

queries with
impunity.

36 / 40

Not a batch system

Although incoming jobs are scattered to compute nodes, computed
in parallel, and then gathered, this differs from a batch system in
important ways.

1. No “job id” or attempt to send results back to the user.

Identical queries on the same dataset will always yield identical
results, so jobs are identified by a hash of the query itself.

Client polls for updates and may break/reestablish connection
before it’s done. Dispatch checks the “store” for partial
results, rather than re-running.

Therefore, when users refresh their analysis scripts or run
tutorial examples, they don’t stress the computation engine.

2. Subtasks are assigned to “compute” nodes based on what
data they need (hash of input column names). That way, any
cached input will be local to that node.

37 / 40

Loosely coupled, resistant to failure

Each circle on the diagram is a collection of identical nodes, none
of which are single points of failure.

I If a “compute” node disappears, the hash-assignment function
has a series of fallbacks.

I The “dispatch” nodes are stateless; they can be load-balanced.

I Only the “store” persistently holds results; it’s a MongoDB
instance with appropriate partitioning and replication.

I The datasets in “metadb” and “datadb” are treated as
immutable artifacts. New datasets may be created (with
version numbers), but not changed in-place.

38 / 40

Conclusions

39 / 40

Conclusions

Progress on all three aspects of the Femtocode query server project.

I Langauge/Compiler: starting to compute meaningful
quantities. Parser and type-checker are mature.

I Execution engine: problem of how to compute general
“explosions” is under control. Compiling with LLVM and even
serializing compiled functions for remote execution. Factors of
several from optimal performance.

I Distributed server: working prototype passes data through
components, returns results as it should. Have not attempted
to scale up.

Mature enough that there may be subprojects to split off. Ask me
if you’re interested!

40 / 40

