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A little bit of History

• Particle Physics started 
with detectors, 
exploiting interaction 
between particles and 
environment

• Charged particles 
bend under magnetic 
field (Lorentz force)

• Particles ionize 
material hitting atoms 
(e.g., the silicon in  
the camera of your 
phone)
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A little bit of History

• The first detectors 
where chambers of 
low-pressure gas

• Particles crossing 
ionize the gas and 
makes bubbles 

• Looking at 
pictures (one by 
one) and 
connecting the 
dots, humans 
could track 
particles
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A little bit of History

• The first 
source of 
particles came 
from the sky: 
cosmic rays
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• More recently, images 
produced colliding a particle 
beam against a metal target

• Analysis performed by visual 
inspection 



Modern Particle Physics

• More precise studies made 
possible with first particle 
colliders

• controlled environment 
in laboratory

• a lot of data, at tunable 
energy and intensity

• It was not possible 
anymore to perform single 
experiments by individuals 6

• These pioneer studies allowed many discoveries 

• antimatter

• new heavier particles (muons, taus, etc)

• new lighter particles (quarks inside the protons)



Multipurpose detectors
• With so many particles produced, one need a detector 

capable of seeing all of them

• Each particle has specific behaviour and needs a specific 
strategy to be detected

7



Hermetic detectors
• Particle colliders create collisions in one point

• Particles go everywhere. One needs a detector which 
covers as much as possible the space around the collision
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The LHC
• The LHC is a proton 

collider

• Protons are 
accelerated to 13 
TeV ~ 13000 the 
equivalent energy of 
their mass

• Collisions happen 
every 25 nsec 

• Protons break in the 
collisions, creating 
heavier particles 
(proton energy 
turned into particle 
mass)
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• Two multipurpose 
detectors study 
many different 
kinds of collision

• Higgs boson

• Weak and 
strong 
interactions

• New physics 
(dark matter, 
supersymmetry, 
etc)
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The LHC detectors
CMS

Atlas



• One detector 
studies the 
differences 
between matter 
and antimatter
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The LHC detectors

LHCb



• One detector 
studies collisions 
between lead 
atoms (1 month/
year) and the soup 
of quark and 
gluons produced 
in these collisions
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The LHC detectors

Alice



The LHC Big Data problem
• The LHC generates 40 million collisions every second

• The technology to store all these data doesn’t exist

• Keeping data costs money (for disk, tape, and CPU for processing)

• We need to select in real time what we want to keep

• Some event is more interesting than other

13

A BIG THEORETICAL 
BIAS that we have to 

pay

The total rate of 
events is 400000 
times this value



Data Flow
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The LHC Big Data problem
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https://www.youtube.com/watch?v=jDC3-QSiLB4

https://www.youtube.com/watch?v=jDC3-QSiLB4


Data Flow
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• 40 MHz in / 100 KHz out

• ~ 500 KB / event

• Processing time: ~10 μs

• Based on coarse local reconstructions

• FPGAs / Hardware implemented

The LHC Big Data problem



Data Flow
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• ~ 500 KB / event
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Data Flow
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• 1 KHz in / 1.2 KHz out

• ~ 1 MB / 200 KB / 30 KB per event

• Processing time: ~20 s

• Based on accurate global reconstructions

• Software implemented on CPUs

The LHC Big Data problem



Data Flow

19

L1 t
rig

ger

HLT fa
rm

Offl
in

e  

com
putin

g 

Data
 

Analy
sis

• Up to ~ 500 Hz In / 100-1000 events out

• <30 KB per event

• Processing time irrelevant

• User-written code + centrally produced 
selection algorithms

The LHC Big Data problem



Data Flow
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What do we do with these  data?

• We start from a question

• Does the Higgs boson exist?

• Is the LHC produce Dark Matter?

• Are there heavier copies of the 
Standard Model particles?

• We work out the consequences of 
each test hypothesis

• Higgs boson -> events with 2 
photons and specific mass value

• dark matter -> events with 
invisible particles

• heavier SM copies -> pairs of SM 
particles with specific mass values

21



What do we do with these  data?

• We start from a question

• Does the Higgs boson exist?

• Is the LHC produce Dark 
Matter?

• Are there heavier copies of the 
Standard Model particles?

• We work out the consequences of 
each test hypothesis

• Higgs boson -> events with 2 
photons and specific mass value

• dark matter -> events with 
invisible particles

• heavier SM copies -> pairs of 
SM particles with specific mass 
values
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Start from all events with two 
photons 

Filter the events applying cleanup 
algorithms

Compute the mass of the di-photon 
object

Run statistical analysis (search for 
signal over background)



What do we do with these  data?
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γ1

γ2

• Energy of the particle E 
measured by detector 

• Location of the deposit gives 
the directions (vx,vy,vz) and 
(wx,wy,wz) for γ1 and γ2

• Photons have no mass 

mγγ



Filling the mass histogram
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Filling the mass histogram
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Filling the mass histogram
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Filling the mass histogram
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Fitting the mass histogram
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Fitting the mass histogram
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Not all peaks are discoveries
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Search for Dark Matter
• We cannot see Dark Matter

• But we can make it

• We can observe Dark Matter indirectly,

     using energy/momentum conservation
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Search for Dark Matter
• We cannot see Dark Matter

• But we can make it

• We can observe Dark Matter indirectly,

     using energy/momentum conservation
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Search for Dark Matter
• We cannot see Dark Matter

• But we can make it

• We can observe Dark Matter indirectly,

     using energy/momentum conservation
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Search for Dark Matter
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Search for Dark Matter
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Missing Transverse Energy

• Missing Momentum

• Missing Energy
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But it did not.. (so far)
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The challenge ahead

• The evolving conditions of the machine are 
drifting the experiments to more prohibitive 
environments (luminosity comes with a 
cost)

• More (& bigger) events to handle

• More noise from pileup interactions

• Increase in resources will not scale with 
needs

• Flat (or decreasing?) budget

• (Non linearly) increasing demand

• Need to find better ways to do things

• Problems can be formulated as image 
detection, where big progresses are 
happening (see ConvNNs)
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Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23



New instruments
• The High-Luminosity 

challenges will be faced 
improving the detector

• add tracking capability 
earlier in the game (@L1 
trigger)

• improve detector coverage

• improve detector 
granularity
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The HGCAL Cells geometry

12

To cope the irradiation / PU:
! η-dependent depletion of Si
! η-dependent cell size

Hexagonal 6” Si wafer (256 or 512 channels

Mechanics: HGC-HCAL 
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! Bolted Brass mechanical structure (follows the current CMS HE)

! 60° Brass plates machined to insert 30° (single-side) cassettes (grey in the drawings)



• New technique for computing vision & AI applications

• Similar to human vision

• process overlapping patches of image

• combine them together

• Nowadays technology for deep learning (self-driving cars, etc)

Convolutional NN
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• Represent hits as 8x8 images

• use the deposited energy 
(ADC counts) as temperature

• Use DNN to decide if a given 
pair of hits is a good match or a 
fake
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Jet ID with ML

• Jets are cone-like showers of 
quarks and gluons that produce 
tens of particles, all close to 
each other

• With large energies (e.g., LHC), 
jets can also come from H, W, 
top particles (decaying to jets, 
which overlap)

• Several papers in the last two 
years on DNN solutions to this 
problem

43q, g W,Z,H top



Performance
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to the HEPTopTagger or SoftDrop picks up this additional information and also induces the
three-prong top decay structure into SoftDrop. We use N kT -axes, � = 1 and the reference
distance R

0

. A small value ⌧N indicates consistency with N or less substructure axes, so an N -
prong decays give rise to a small ratio ⌧N/⌧N�1

. For top tagging ⌧

3

/⌧

2

is particularly useful in
combination with QCD taggers in a multivariate setup [19]. The N -subjettiness variables ⌧j can
be defined based on the complete fat jet or based on the fat jet after applying the SoftDrop
criterion. Using ⌧j and ⌧

sd

j in a multivariate analysis usually leads to optimal result.

B. Comparison

To benchmark the performance of ourDeepTopDNN, we compare its ROC curve with standard
Boosted Decision Trees based on the C/A jets using SoftDrop combined with N -subjettiness.
From Fig. 3 we know the spread of performance for the di↵erent network architectures for fully
pre-processed images. In Fig. 8 we see that minimal pre-processing actually leads to slightly better
results, because the combination or rotation and cropping described in Sec. II A leads to a small
loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables
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SoftDrop + n-subjettiness:

MotherOfTaggers:
• Train a BDT on a set of 

standard tagging variables
12

1

10

10

2

10

3

10

4

0 0.2 0.4 0.6 0.8 1

B
a
c
k
g
r
o
u
n
d

r
e
j
e
c
t
i
o
n

1
/‘

B

Signal e�ciency ‘S

SoftDrop+N -subjettiness

MotherOfTaggers
DeepTop full

DeepTop minimal

Figure 8. Left: performance of di↵erent DeepTop setups, including the curves shown in Fig. 3. Right:
performance of the neural network tagger compared to the QCD-based approaches SoftDrop plus N -
subjettiness and including the HEPTopTagger variables.

to the HEPTopTagger or SoftDrop picks up this additional information and also induces the
three-prong top decay structure into SoftDrop. We use N kT -axes, � = 1 and the reference
distance R

0

. A small value ⌧N indicates consistency with N or less substructure axes, so an N -
prong decays give rise to a small ratio ⌧N/⌧N�1

. For top tagging ⌧

3

/⌧

2

is particularly useful in
combination with QCD taggers in a multivariate setup [19]. The N -subjettiness variables ⌧j can
be defined based on the complete fat jet or based on the fat jet after applying the SoftDrop
criterion. Using ⌧j and ⌧

sd

j in a multivariate analysis usually leads to optimal result.

B. Comparison

To benchmark the performance of ourDeepTopDNN, we compare its ROC curve with standard
Boosted Decision Trees based on the C/A jets using SoftDrop combined with N -subjettiness.
From Fig. 3 we know the spread of performance for the di↵erent network architectures for fully
pre-processed images. In Fig. 8 we see that minimal pre-processing actually leads to slightly better
results, because the combination or rotation and cropping described in Sec. II A leads to a small
loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables

{ m

sd

,m

fat

, ⌧

2

, ⌧

3

, ⌧

sd

2

, ⌧

sd

3

} (SoftDrop + N -subjettiness) , (16)

where m

fat

is the un-groomed mass of the fat jet. This is similar to standard experimental ap-
proaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition, we include the
HEPTopTagger2 information from filtering combined with a mass drop criterion,

{ m

sd

,m

fat

,m

rec

, f

rec

,�R

opt

, ⌧

2

, ⌧

3

, ⌧

sd

2

, ⌧

sd

3

} (MotherOfTaggers) . (17)

12

Wednesday 22 March 17

Jet ID with ConvNNs
• Major challenge: irregular detector geometry 

(vs “regular arrays” assumed in DL applications)

• Jet image processing to “regularise” jet showers 
and make DL work easier (cantering, rotating, 
flipping image)

• Good performances on simulated events

44

Image approach

• Jets = 2d grayscale images:

• 1 pixel = 0.1 in eta, 5 degree in phi

• pixel energy: calorimeter ET

• Preprocessing

• Center maximum

• Rotate so that second maximum is 12 o’clock

• Flip so that third maximum is on the right side

• Crop to 40x40 pixels

6

0 5 10 15 20 25 30 35 40
�� pixels

40

35

30

25

20

15

10

5

0

��
pi

xe
ls

10�3

10�2

10�1

100

101

C
al

or
im

et
er

E
T

[G
eV

]

Figure 1. Jet image after pre-processing for the signal (left) and background (right). Each picture is averaged
over 10,000 actual images.

pT,fat = 350 ... 450 GeV, such that all top decay products can be easily captured in the fat jet. For
signal events, we require that the fat jet can be associated with a Monte-Carlo truth top quark
within �R < 1.2.

We can speed up the learning process or illustrate the ConvNet performance by applying a set
of pre-processing steps:

1. Find maxima: before we can align any image we have to identify characteristic points. Using
a filter of size 3 ⇥ 3 pixels, we localize the three leading maxima in the image;

2. Shift: we then shift the image to center the global maximum taking into account the peri-
odicity in the azimuthal angle direction;

3. Rotation: next, we rotate the image such that the second maximum is in the 12 o’clock
position. The interpolation is done linearly;

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane;

5. Crop: finally, we crop the image to 40 ⇥ 40 pixels.

Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.

A non-trivial pre-processing step is the shift in the ⌘ direction, since the jet energy E is not
invariant under a longitudinal boost. Following Ref. [12] we investigate the e↵ect on the mass
information contained in the images,
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Figure 1. Jet image after pre-processing for the signal (left) and background (right). Each picture is averaged
over 10,000 actual images.

pT,fat = 350 ... 450 GeV, such that all top decay products can be easily captured in the fat jet. For
signal events, we require that the fat jet can be associated with a Monte-Carlo truth top quark
within �R < 1.2.

We can speed up the learning process or illustrate the ConvNet performance by applying a set
of pre-processing steps:

1. Find maxima: before we can align any image we have to identify characteristic points. Using
a filter of size 3 ⇥ 3 pixels, we localize the three leading maxima in the image;

2. Shift: we then shift the image to center the global maximum taking into account the peri-
odicity in the azimuthal angle direction;

3. Rotation: next, we rotate the image such that the second maximum is in the 12 o’clock
position. The interpolation is done linearly;

4. Flip: next we flip the image to ensure the third maximum is in the right half-plane;

5. Crop: finally, we crop the image to 40 ⇥ 40 pixels.

Throughout the paper we will apply two pre-processing setups: for minimal pre-processing we apply
steps 1, 2 and 5 to define a centered jet image of given size. Alternatively, for full pre-processing
we apply all five steps. In Fig. 1 we show averaged signal and background images based on the
transverse energy from 10,000 individual images after full pre-processing. The leading subjet is in
the center of the image, the second subjet is in the 12 o’clock position, and a third subjet from
the top decay is smeared over the right half of the signal images. These images indicate that fully
pre-processed images might lose a small amount of information at the end of the 12 o’clock axis.

A non-trivial pre-processing step is the shift in the ⌘ direction, since the jet energy E is not
invariant under a longitudinal boost. Following Ref. [12] we investigate the e↵ect on the mass
information contained in the images,
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• Use NNs to generate new images from a sample of images

• Example: autoencoders

Generative Network
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Encoder Decoder
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Project the input into an N-dim space

Sample from this N-dim space back into an output 

Minimize output-input distance



• Two networks in competition

• One generates “fake” data

• The other one tries to 
distinguish fake vs real data

• If the second fails, the first is good

• Can generate images

Adversarial Network
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https://arxiv.org/abs/1511.06434v2?__hstc=36392319.4ec9da873182c5b0427a0d36b934b567.1481240248017.1481240248017.1481240248017.1&__hssc=36392319.1.1481240248017&__hsfp=1005577320


GANs for Jets
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Benchmark Models
• DCGAN — convolutional layers in both G and D 
• FCGAN — fully-connected layers in both G and D 
• HYBRIDGAN — a combination of the two:

DCGAN

FCGAN

DCGAN
FCGAN
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Physical Distributions
Check: does the LAGAN recover the true data distribution as 

projected onto a set of meaningful 1D manifolds?✓
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Better? Faster? Both?
• We will sue Deep Learning to make reconstruction and selection faster

• We will move it to trigger layers

• We will trigger faster

• We will trigger better

• We will save resources 

• We will automatise many tasks

48
Data Flow

Future Deep Learning R&D ?



• LHC experiments represent the ultimate technological advance in 
particle physics

• very complicated conditions

• very broad range of tasks to accomplish

• We are doing great (Higgs boson discovery) but this is not enough (no 
new physics yet)

• Future ahead challenges

• More needs, because of more chaotic environment

• Less resources (budget for science decreasing)

• We need to change approach

• Looking fwd to Deep Learning as a way out

Conclusions
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