

Computing in High Energy Physics

John Apostolakis SoFTware for Physics Group, EP Dep, CERN

V1.0

2016.02.10 John.Apostolakis@cern.ch

Outline - Part 2

□ Uses of Computers Data Acquisition – record Reconstruction: Online, and off-line **□Simulation** □Data analysis **□Size of challenge** \square the GRID solution and its other applications

An LHC detector - CMS

Data Acquisition (DAQ)

□ Convert analog electronic signals into digital data Trigger – decision to record **□ Find interesting coll.** \Box Assess – do they meet selection criteria

Reconstruction

A lightning introduction

The Reconstruction challenge

Starting from this event

Looking for this "signature"

\rightarrow Selectivity: 1 in 10¹³ (Like looking for a needle in 20 million haystacks)

12 February 2016 J. Apostolakis 6

Online and offline reconstruction

- □ Are collisions first-tagged really interesting enough to keep (given capacity constraints)? Online reconstruction – seek to reconstruct 'as much as you can' quickly to enable decision
- \Box Critical part of experiment collisions which are not recorded are lost
- \Box Later there is more time to reconstruct the contents of a collision $-$ but this is also complex

What is reconstruction

- Tracker hits form a puzzle □ Which tracks created them?
- \Box Each energy deposition is a clue.
	- □ There are thousands of measurements in each snap-shot
- The experiment's reconstruction must obtain a solution!
	- \Box In well measured magnetic field
	- Matches the traces to tracks

How it works – a simple example

•Start with the locations of the traces on first two planes

Magnetic field Β

J. Apostolakis 11

Simulation and Detectors

What is simulation ? Why it exists ? How is it done ?

Today's detectors

Many different parts Different capabilities □ Measuring Location (trackers) □ Measuring energy (calorimeters)

□ Due to complexity

- □ Different materials,
- □ Most studies must use computers to create samples of tracker hits & energy deposition

ALICE Exp.

Today's detector Technologies: ATLAS $46m$

What is simulation ?

We build models Detector's Geometry □Shape, Location, Material **□ Physics interactions □All known processes** • Electromagnetic • Nuclear (strong) • Weak (decay $\sigma_{\text{total}} = \Sigma \sigma_{\text{per-interaction}}$ 2.5 MeV eelectron

12 February 2016

J. Apostolakis 15

Silicon

Tracker

Geant4 geometry: what it

Describes a Detector

does

- Hierarchy of volumes
- **Many volumes repeat** Volume & sub-tree
- \Box Up to millions of volumes for LHC era
- \Box Import detectors from CAD systems

Navigates in Detector

- Locates a point
- Computes a step □ Linear intersection

Physics processes

- Physics processes are modelled
- □ For example Electromagnetic processes include:
- Gammas:
	- □ Gamma-conversion, Compton scattering, Photo-electric effect
- \square Leptons(e, \bigcap , charged hadrons, ions
	- □ Energy loss (Ionisation, Bremstrahlung) or PAI model energy loss, Multiple scattering, Transition radiation, Synchrotron radiation,

Photons:

Cerenkov, Rayleigh, Reflection, Refraction, Absorption, Scintillation

High energy muons and lepton-hadron interactions

A simple particle shower

GEANT 3

12 February 2016 **J.** Apostolakis **18 J.** Apostolakis **18**

Atlas : Physics Signatures and Event Rates

- \rightarrow Beam crossing rate 40 MHz
- \rightarrow $\int_{inelastic}$ = 80 mb O In each beam crossing (rising each year, in 2012 ~ 25 interactions)
- Different physics 'targets'
	- Higgs Boson(s) (Discovery 2012)
	- Supersymmetric partner particles
	- **O** Unexpected
	- **O** Matter-antimatter differences (B mesons)
- → Many examples of each channel are simulated

Data Analysis

- \rightarrow Uses the results of Reconstruction
	- O the products are reconstructed tracks, Energy deposits (calorimeters)
	- **O** Hierarchy of data from original (RAW), to summary (AOD)
- \rightarrow An experiment's physics teams use the (large) pool of data
	- O No longer in one central location, but in multiple locations (cost, space of building, computers, disks, network) using the GRID
- \rightarrow Hypatia: a small part of analysis for a school setting
	- O Introduction / [Portal](http://portal.discoverthecosmos.eu)

http://hypatia.iasa.gr/en/index.html

 [http://indico.cern.ch/conferenceDisplay.py?confId=257353#201](http://indico.cern.ch/conferenceDisplay.py?confId=257353) 3-07-08

Data Hierarchy

Event Data

- \rightarrow Complex data models O ~500 structure types
- \rightarrow References to describe relationships between event objects **O** unidirectional
- \rightarrow Need to support transparent navigation
- \rightarrow Need ultimate resolution on selected events
	- O need to run specialised algorithms
	- **O** work interactively

 \rightarrow Not affordable if uncontrolled

HEP Metadata - Event Collections

Detector Conditions Data

LHC Computing Grid project (LCG)

More than 170 computing centres

ILCG

- 12 large centres for ۰ primary data management: CERN (Tier-0) and eleven Tier- $1s$
- 38 federations of smaller

WLCG Collaboration

The Collaboration

- 4 LHC experiments
- $-$ ~170 computing centres
- -12 large centres (Tier-0, Tier-1)
- 38 federations of smaller "Tier-2" centres
- $~5$ Countries
- **Memorandum of Understanding**
	- Agreed in October 2005
- **Resources**
	- Focuses on the needs of the four LHC experiments
	- **Commits resources**
		- each October for the coming year
		- 5-year forward look
	- Agrees on standards and procedures
- Relies on EGEE and OSG (and other regional efforts)

LCG depends on two major science grid infrastructures ….

EGEE - Enabling Grids for E-Science **OSG** - US Open Science Grid

A map of the worldwide LCG infrastructure operated by EGEE and OSG.

Applications

Enabling Grids for E-sciencE

- **Many applications in different domains**
	- High Energy Physics (Pilot domain)
		- Experiments at CERN (LHC), DESY, Fermilab
	- Biomedical (Pilot domain)
		- \triangle Bioinformatics
		- Medical imaging
	- Earth Sciences
		- Geo-surveying
		- + Solid Earth Physics
		- Hydrology, Climate
	- Computational Chemistry
	- Fusion
	- Astronomy
		- Cosmic Microwave Background
		- Gamma ray astronomy
	- Geology
	- Industrial Applications

Running jobs on LCG

Domputing

LCG

2010 Tier-0 Data Taking

Tier-0 Bandwidth Average in: 2 GB/s with peaks at 11.5 GB/s Average out: 6 GB/s with peaks at 25 GB/s

12 February 2016 J. Apostolakis 34 February 2016 J. Apostolakis 34 February 2016 J. Apostolakis 34 February 34
12 February 2016 J. Apostolakis 34 February 34 February 34 February 34 February 34 February 34 February 34 Feb

LCG

- "Cloud computing" is gaining importance
	- Web based solutions (http/https and RES)
	- Virtualization, upload machine images to remote sites
- GRID has mainly a scientific user base
	- Complex applications running across multiple sites, but works like a cluster batch system for the end user
	- Mainly suitable for parallel computing and massive data processing
- **Expect convergence in the future**
	- "Internal Cloud" at CERN
	- CernVM virtual machine running e.g. at Amazon

Distributed Analysis – the real challenge

- Analysis will be performed with a mix of "official" experiment software and private user code
	- O How can we make sure that the user code can execute and provide a correct result wherever it "lands"?
- \rightarrow Input datasets not necessarily known a-priori
- \rightarrow Possibly very sparse data access pattern when only a very few events match the query
- \rightarrow Large number of people submitting jobs concurrently and in an uncoordinated fashion resulting into a chaotic workload
- \rightarrow Wide range of user expertise
- \rightarrow Need for interactivity requirements on system response time rather than throughput
- \rightarrow Ability to "suspend" an interactive session and resume it later, in a different location
- \rightarrow Need a continuous dialogue between developers and users

More on simulation

Applications beyond HEP

- Biomedical Bioinformatics
	- □ Medical imaging
- Earth Sciences
	- □ Geo-surveying
	- **□ Solid Earth Physics**
	- Hydrology, Climate
- Astronomy \Box
	- □ Cosmic Microwave Background
	- □ Gamma ray astronomy
- Computational Chemistry
- Fusion
- Geology
- Industrial Applications

Propagating in a field

Charged particles follow paths that approximate their curved trajectories in an electromagnetic field.

It is possible to tailor

- \Box the accuracy of the splitting of the curve into linear segments,
- \square the accuracy in intersecting each volume boundaries.
- These can be set now to different values for a single volume or for a hierarchy.

Antiproton annihilation - CHIPS Model

Simulation 'packages'

 \Box Provides the means to simulate □ the physical processes and □ detector response of an experiment.

 \Box As was realised by many in the past, □ most of the parts needed can be common between experiments (eg physics, geometry blocks) .

□ So it makes eminent sense to create and use a general purpose package

 \Box That includes the common parts,

And enables an experiment to describe those parts with are specific to it.

Induced X-ray line emission: indicator of target composition $(\sim 100$ m surface layer)

X-Ray Surveys of Asteroids and Moons

ESA Space Environment & Effects Analysis Section

CERN Centre Capacity Requirements for all expts.

A Multi-Tier Computing Model

Manager View **User View**