

Computing in High Energy Physics

John Apostolakis SoFTware for Physics Group, EP Dep, CERN

V1.0 2016.02.10

John.Apostolakis@cern.ch

Outline - Part 2

Uses of Computers
 Data Acquisition – record
 Reconstruction: Online, and off-line
 Simulation
 Data analysis
 Size of challenge
 the GRID solution and its other applications

An LHC detector - CMS

J. Apostolakis

Data Acquisition (DAQ)

Convert analog electronic signals into digital data
 Trigger – decision to record
 Find interesting coll.
 Assess – do they meet selection criteria

Reconstruction

A lightning introduction

The Reconstruction challenge

Starting from this event

Looking for this "signature"

\rightarrow Selectivity: 1 in 10¹³ (Like looking for a needle in 20 million haystacks)

12 February 2016

J. Apostolakis

Online and offline reconstruction

- Are collisions first-tagged really interesting enough to keep (given capacity constraints)?
 Online reconstruction – seek to reconstruct `as much as you can' quickly to enable decision
- Critical part of experiment collisions which are not recorded are lost
- Later there is more time to reconstruct the contents of a collision but this is also complex

What is reconstruction

- Tracker hits form a puzzle
 Which tracks created them?
- Each energy deposition is a clue.
 - There are thousands of measurements in each snap-shot
 - The experiment's reconstruction must obtain a solution!
 - □ In well measured magnetic field
 - Matches the traces to tracks

How it works – a simple example

•Start with the locations of the traces on first two planes

Magnetic field B

 (\mathfrak{X})

J. Apostolakis

Simulation and Detectors

What is simulation ?Why it exists ?How is it done ?

Today's detectors

Many different parts
 Different capabilities
 Measuring Location (trackers)
 Measuring energy (calorimeters)

Due to complexity

- Different materials,
- Most studies must use computers to create samples of tracker hits & energy deposition

ALICE Exp.

Today's detector Technologies: ATLAS

CERNY

What is simulation ?

We build models **Detector's Geometry** Shape, Location, Material Physics interactions □ All known processes Electromagnetic • Nuclear (strong) Weak (decay 2.5 MeV e⁻ $\sigma_{\text{total}} = \Sigma \sigma_{\text{per-interaction}}$ electron

12 February 2016

J. Apostolakis

300 u

Silicon

Tracker

Geant4 geometry: what it

Describes a Detector

does

- Hierarchy of volumes
- Many volumes repeat
 Volume & sub-tree
- Up to millions of volumes for LHC era
- Import detectors from CAD systems

Navigates in Detector

- Locates a point
- Computes a step
 Linear intersection

Physics processes

- Physics processes are modelled
- □ For example Electromagnetic processes include:
- Gammas:
 - □ Gamma-conversion, Compton scattering, Photo-electric effect
- □ Leptons(e, (), charged hadrons, ions
 - Energy loss (Ionisation, Bremstrahlung) or PAI model energy loss, Multiple scattering, Transition radiation, Synchrotron radiation,

Photons:

Cerenkov, Rayleigh, Reflection, Refraction, Absorption, Scintillation

High energy muons and lepton-hadron interactions

A simple particle shower

GEANT 3

12 February 2016

J. Apostolakis

J. Apostolakis

Atlas : Physics Signatures and Event Rates

- → Beam crossing rate 40 MHz
- finelastic = 80 mb
 In each beam crossing (rising each year, in 2012 ~ 25 interactions)
- Different physics 'targets'
 - Higgs Boson(s) (Discovery 2012)
 - O Supersymmetric partner particles
 - O Unexpected
 - Matter-antimatter differences (B mesons)
- Many examples of each channel are simulated

20

12 February 2016

J. Apostolakis

22

Data Analysis

- Uses the results of Reconstruction
 - the products are reconstructed tracks, Energy deposits (calorimeters)
 - Hierarchy of data from original (RAW), to summary (AOD)
- An experiment's physics teams use the (large) pool of data
 - No longer in one central location, but in multiple locations (cost, space of building, computers, disks, network) using the GRID
- Hypatia: a small part of analysis for a school setting
 - O Introduction /<u>Portal</u>

+http://hypatia.iasa.gr/en/index.html

• <u>http://indico.cern.ch/conferenceDisplay.py?confId=257353#201</u> <u>3-07-08</u>

Data Hierarchy

Event Data

- Complex data models
 ~500 structure types
- References to describe relationships between event objects
 unidirectional
- Need to support transparent navigation
- Need ultimate resolution on selected events
 - need to run specialised algorithms
 - work interactively

 Not affordable if uncontrolled

HEP Metadata - Event Collections

Detector Conditions Data

LHC Computing Grid project (LCG)

 More than 170 computing centres

LCG

- 12 large centres for primary data management: CERN (Tier-0) and eleven Tier-1s
- 38 federations of smaller

WLCG Collaboration

The Collaboration

- 4 LHC experiments
- ~170 computing centres
- 12 large centres (Tier-0, Tier-1)
- 38 federations of smaller "Tier-2" centres
- ~35 countries
- Memorandum of Understanding
 - Agreed in October 2005
- Resources
 - Focuses on the needs of the four LHC experiments
 - Commits resources
 - § each October for the coming year
 - § 5-year forward look
 - Agrees on standards and procedures
- Relies on EGEE and OSG (and other regional efforts)

LCG depends on two major science grid infrastructures

EGEE - Enabling Grids for E-Science OSG - US Open Science Grid

A map of the worldwide LCG infrastructure operated by EGEE and OSG.

Applications

Enabling Grids for E-sciencE

- Many applications in different domains
 - High Energy Physics (Pilot domain)
 - + Experiments at CERN (LHC), DESY, Fermilab
 - Biomedical (Pilot domain)
 - Bioinformatics
 - + Medical imaging
 - Earth Sciences
 - + Geo-surveying
 - + Solid Earth Physics
 - + Hydrology, Climate
 - Computational Chemistry
 - Fusion
 - Astronomy
 - + Cosmic Microwave Background
 - + Gamma ray astronomy
 - Geology
 - Industrial Applications

Running jobs on LCG

omputing

LCG

2010 Tier-0 Data Taking

Tier-0 Bandwidth Average in: 2 GB/s with peaks at 11.5 GB/s Average out: 6 GB/s with peaks at 25 GB/s

LCG

- "Cloud computing" is gaining importance
 - Web based solutions (http/https and RES)
 - Virtualization, upload machine images to remote sites
- GRID has mainly a scientific user base
 - Complex applications running across multiple sites, but works like a cluster batch system for the end user
 - Mainly suitable for parallel computing and massive data processing
- Expect convergence in the future
 - "Internal Cloud" at CERN
 - CernVM virtual machine running e.g. at Amazon

Distributed Analysis - the real challenge

- Analysis will be performed with a mix of "official" experiment software and private user code
 - How can we make sure that the user code can execute and provide a correct result wherever it "lands"?
- Input datasets not necessarily known a-priori
- Possibly very sparse data access pattern when only a very few events match the query
- Large number of people submitting jobs concurrently and in an uncoordinated fashion resulting into a chaotic workload
- → Wide range of user expertise
- Need for interactivity requirements on system response time rather than throughput
- Ability to "suspend" an interactive session and resume it later, in a different location
- Need a continuous dialogue between developers and users

More on simulation

Applications beyond HEP

- Biomedical Bioinformatics
 - Medical imaging
- Earth Sciences
 - Geo-surveying
 - Solid Earth Physics
 - □ Hydrology, Climate
- Astronomy
 - □ Cosmic Microwave Background
 - Gamma ray astronomy
- Computational Chemistry
- Fusion
- Geology
- Industrial Applications

Propagating in a field

Charged particles follow paths that approximate their curved trajectories in an electromagnetic field.

It is possible to tailor

- the accuracy of the splitting of the curve into linear segments,
- the accuracy in intersecting each volume boundaries.
- These can be set now to different values for a single volume or for a hierarchy.

Antiproton annihilation - CHIPS Model

Simulation 'packages'

Provides the means to simulate
 the physical processes and
 detector response of an experiment.

- As was realised by many in the past,
 most of the parts needed can be common between experiments (eg physics, geometry blocks).
- So it makes eminent sense to create and use a general purpose package
 - That includes the common parts,
 - And enables an experiment to describe those parts with are specific to it.

Induced X-ray line emission: indicator of target composition (~100 \left(m surface layer)

X-Ray Surveys of Asteroids and Moons

ESA Space Environment & Effects Analysis Section

43

J. Apostolakis

CERN Centre Capacity Requirements for all expts.

A Multi-Tier Computing Model

Manager View

User View