

Systems and Technology Group

Future Commodity Chip Called CELL for HPC

Piotr Pietrzak Systems Architect IBM Systems & Technology Group

Short agenda

- An overview of curent HPC situation
- PowerPC architecture for HPC
- An overview of
 - Cell history
 - Cell microprocessor highlights
 - Hardware components
 - Software environment
 - Software development considerations
 - Cell performance characteristics
 - Cell blade server
 - Cell application affinity and target opportunities
- Curiosity

IBM POWER Architecture™ leads in TOP500 supercomputers

Semiannual independent ranking of top 500 supercomputers in the world*

Technology	# of Processors	Share
POWER3™	16,768	2.3%
POWER4™	8,608	1.2%
POWER4+™	21,866	3.0%
POWER5™	22,208	3.0%
PowerPC® (970)	14,460	2.0%
Power PC 440	243,712	33.3%
IBM POWER™ Total	327,622	44.8%
Pentium® 4 Xeon™	184.908	25.3 %
Xeon EM64T	58,204	8.0%
Itanium® 2	45,064	6.2%
Intel Total	288,176	39.4%
HP (PA-RISC)	14,784	2.0%
Opteron	68,789	9.4%
Cray X1	3,034	0.4%
NEC	6,072	0.8%
SPARC	6,112	0.8%
Alpha	15,160	2.1%
Hitachi SR8000	1,320	0.2%
Other Total	115,271	15.8%

Source:

http://www.top500.org

p5-575 Is already top UNIX® system in TOP500!

TOP500 ¹	Installation	Processor	Rmax TF/s
1	DOE BlueGene®/L LLNL	700 MHz PPC 440	280.6
2	BlueGene at Watson	700 MHz PPC 440	91.2
3	ASC Purple LLNL	1.9 GHz p5-575	63.4

16-core 1.9 GHz p5-575 delivers nearly 2X the LINPACK performance of the 8-core 1.9 GHz p5-575²

*Sources:

1. http://www.top500.org

2. http://www.netlib.org/benchmark/performance.pdf

Source: www.top500.org

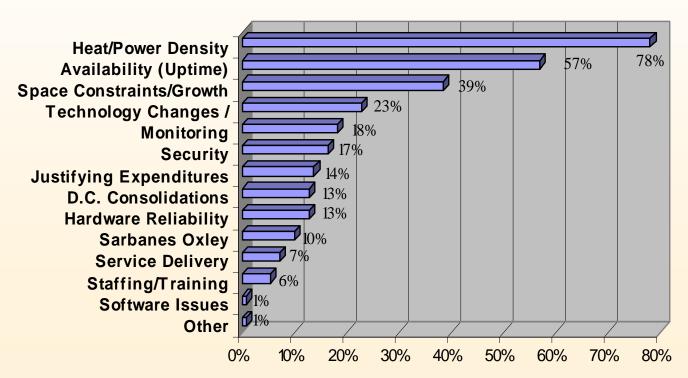
p5-575 and Blue Gene/L differentiation

p5-575: 64-bit AIX 5L/Linux cluster nodes suitable for applications requiring high memory bandwidth and large memory (32GB) per 64-bit processor.	Blue Gene/L: 32-bit Linux and custom kernel clusters suitable for highly parallel applications with limited memory requirements (256MB per 32-bit processor) and limited or highly parallelized I/O.
Scalable systems: 16 to 2,048 1.9 GHz POWER5+ CPUs	Very large systems: up to 100,000+ 667 MHz PPC440 CPUs
"Off-the-shelf" and custom configurations	Custom configurations
Standard IBM service and support	Custom service and support
1,000s of applications supported	Highly effective in target applications

CURRENT DEPLOYMENT EXAMPLES

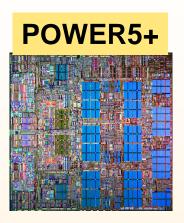
ASC PURPLE - NNSA/LLNL Blue Gene/L - NNSA/LLNL

Source: http://www.netlib.org/benchmark/performance.pdf as of 02/14/2006


Source: http://www.top500.org/lists/plists.php?Y=2005&M=06 as of 02/14/2006

Technology: Heat/power density tops list of IT management concerns

Spring 2005 Data Center Users' Group conference
- The Adaptive Data Center: Managing Dynamic Technologies.


Top Facility / Network Concerns

Source: http://www.liebert.ws/liebertmadara/liebertmadara_files/Default.htm#nopreload=1

Enhanced POWER processor capabilities

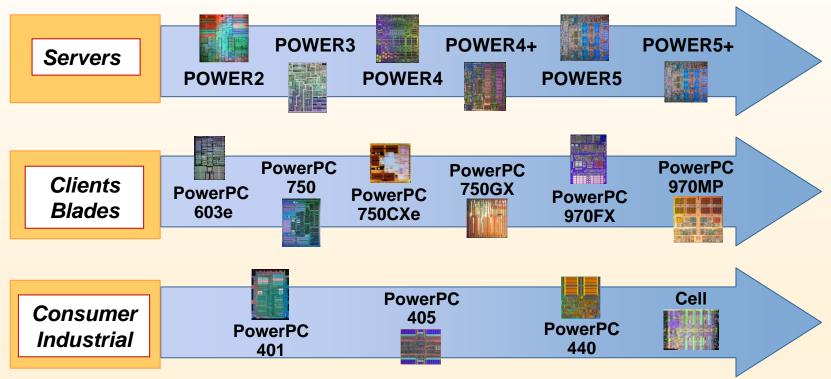
POWER5+ Enhancements

- Higher frequencies
- 37% reduction in size vs. POWER5
- Reduction in power consumption
- Large page size support
- Memory controller improvements
- Quad-Core Module support
- Better performance

IBM PowerPC 970MP

IBM PowerPC 970MP

- High performance and advaced function - over 50 million transistors
- Single instruction multiple data (SIMD) units accelerate HPC workloads
- Low power consumption
- Combines silicon-on-insulator, strained silicon, and copper wiring technologies



IBM POWER Architecture

From consumer electronics to supercomputers

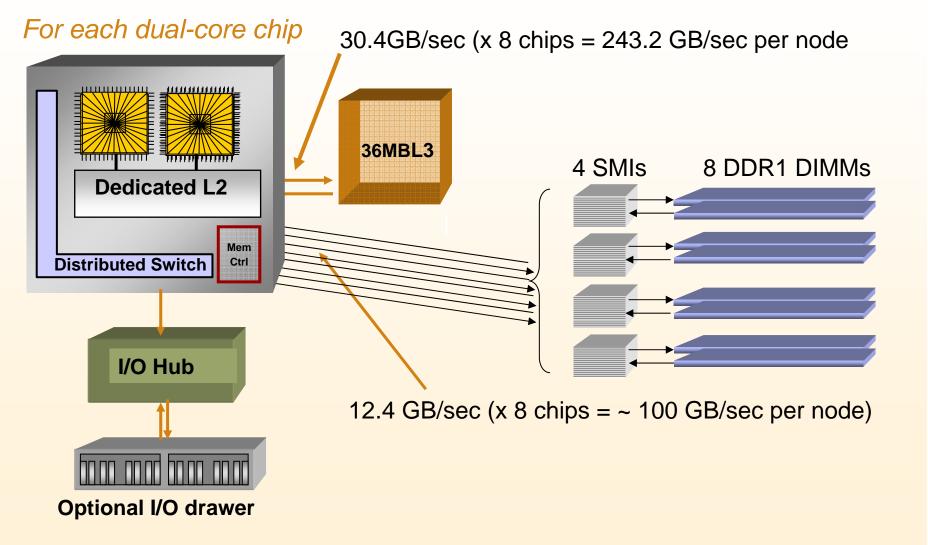
A common architecture . . . the most scalable technology

IBM System p5 575: THE CRUNCHER!

New 8-core DATA CRUNCHER

p5-575 [8-core] 2.2 GHz 66.4 GFLOPS/node LINPACK HPC 100.5 GB/sec STREAM Traid (Tuned)

New 16-core NUMBER CRUNCHER


p5-575 [16-core] 1.9 GHz 111.4 GFLOPS/node LINPACK HPC 86.3 GB/sec STREAM Triad (Tuned)

Sources: http://www.cs.virginia.edu/stream/ submitted February 14, 2006 http://www.netlib.org/benchmark/performance.pdf submitted February 14,2006

1: Node hardware only, 1GB memory 2: Node hardware only, 16GB memory

p5-575 Peak Bandwidths per 1.5 GHz 2-way Chip

Facts About the Blue Gene® Program

- 1) Delivered on the promise of leadership HPC performance
 - On target to reach 360 peak Teraflops
 - Other application and industry performance studies as available
- 2) Broad applicability of Blue Gene to important HPC workloads helps advance science, engineering and business
 - Topics at the forefront of international concern:
 - Defense and Homeland Security
 - Healthcare and Life Sciences
 - Environmental and Climate Modeling; Weather Forecasting
 - Energy Production and Resource Management
 - Product Safety and Efficiency
 - Cultivating ISV support in key application areas
- 3) Enhanced accessibility to world-class computing
 - Inclusion of Blue Gene in the Deep Computing Capacity On Demand center
 - Introduction of reduced-sized Blue Gene systems (limited scope)
 - IBM Global Financing Leasing and Financing Programs
- 4) Commercialized and aligned with the IBM server portfolio
 - Leveraging and advancing the strengths of Power technology

BlueGene® / L System Buildup

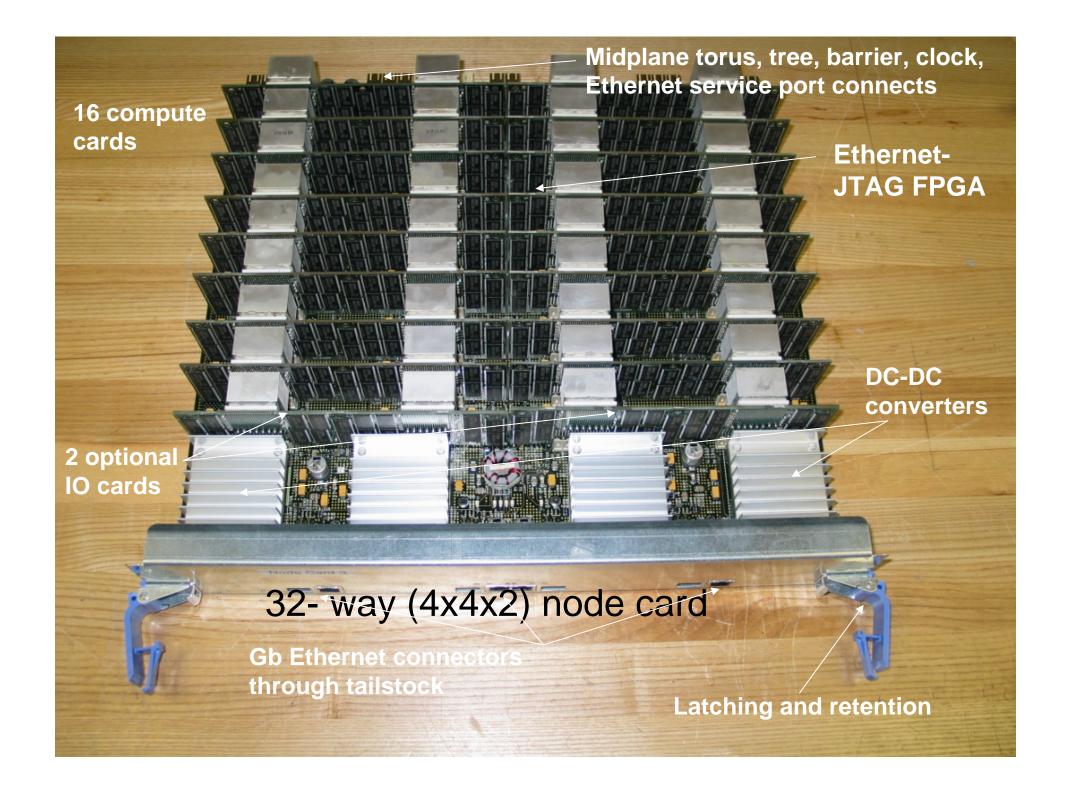
Rack
32 Node Cards

5.6 TF/s 512 GB

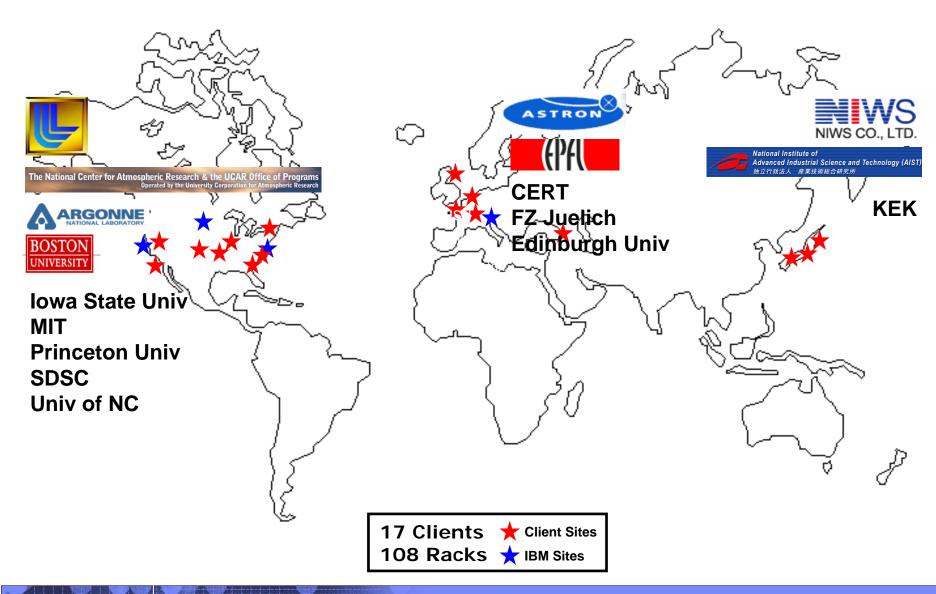
360 TF/s 32 TB

Node Card (32 chips 4x4x2) 16 compute, 0-2 IO cards

Compute Card 2 chips, 1x2x1


Chip 2 processors

180 GF/s 16 GB



5.6 GF/s 4 MB 11.2 GF/s 1.0 GB

Where in the world is Blue Gene®?

Blue Gene® Performance and Density Guidance

Performance

Performance Metric	Single Rack Blue Gene Rating
Peak Teraflops (Virtual Node mode)	5.73
Peak Teraflops (Coprocessor mode)	2.86
Linpack Teraflops	4.53
MTOPS (Exceeding 190,000 requires Gov't Export License into Tier 3 countries)	>1.5M

Density

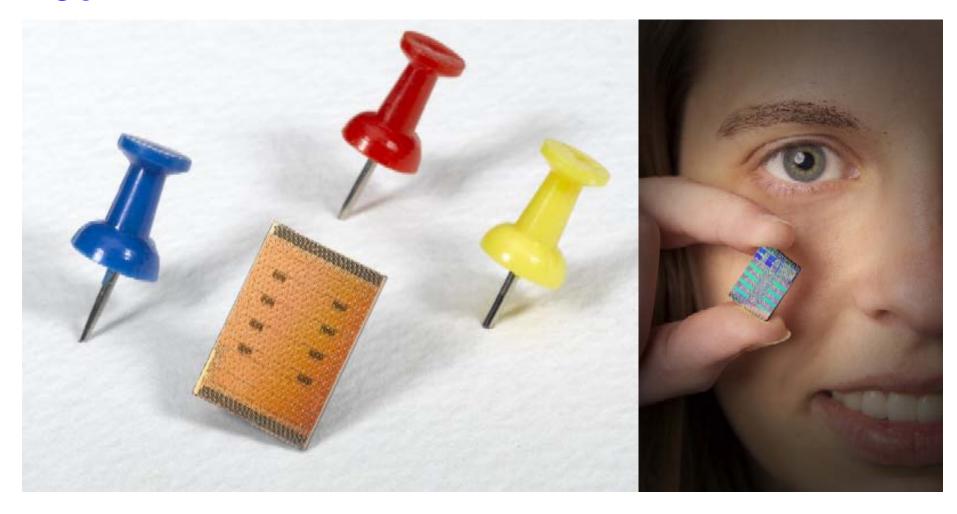
Metric	ASCI White	ASCI Q	Earth Simulator	BG/L
Memory/Space (GB/sq.m)	8.6	17	3.1	140
Speed/Space (GFlops*/sq.m)	13	16	13	1600
Speed/Power (GFlops*/kW)	12	7.9	4	300

* Peak

As of Nov 2005

Blue Gene® Award-Winning Performance

- 3 in Top10 (#1 and #2)
- 7 in Top50 (11-50)
- 9 in Top100 (51-100)
- 19 in Top500


www.top500.org

HPC Challenge Benchmarks	IBM Blue Gene 65,536 nodes 64 racks
HPL (TFLOP/s) – Linpack TPP benchmark which measures floating point rate of execution for solving linear system of equations	259.21
RANDOMACCESS (GUP/s) – measures rate of integer random updates of memory	35.46
FETE (GFLOP/s) – measures floating point rate of execution of double precision complex one-dimensional Discrete Fourier Transform (DFT)	2311.09
STREAM (GB/s) – simple synthetic that measures sustainable memory bandwidth and corresponding computation rate for simple vector kernel	160,064

As of Nov 2006

Cell

Cell History

- IBM, SCEI/Sony, Toshiba Alliance formed in 2000
- Design Center opened in March 2001
 - Based in Austin, Texas
- Single CellBE operational Spring 2004
- 2-way SMP operational Summer 2004
- February 7, 2005: First technical disclosures
- October 6, 2005: Mercury Announces Cell Blade
- November 9, 2005: Open Source SDK & Simulator Published
- November 14, 2005: Mercury Announces Turismo Cell Offering
- February 8, 2006 IBM Announced Cell Blade

SONY

TOSHIBA

Cell Basic Design Concept

Cell Basic Concept

- Compatibility with 64b Power Architecture™
 - Builds on and leverages IBM investment and community
- Increased efficiency and performance
 - Attacks on the "Power Wall"
 - Non Homogenous Coherent Multiprocessor
 - High design frequency @ a low operating voltage with advanced power management
 - Attacks on the "Memory Wall"
 - Streaming DMA architecture
 - 3-level Memory Model: Main Storage, Local Storage, Register Files
 - Attacks on the "Frequency Wall"
 - Highly optimized implementation
 - Large shared register files and software controlled branching to allow deeper pipelines
- Interface between user and networked world
 - Image rich information, virtual reality
 - Flexibility and security
- Multi-OS support, including RTOS / non-RTOS
 - Combine real-time and non-real time worlds

Cell Design Goals

Cell is an accelerator extension to Power

- Built on a Power ecosystem
- Used best know system practices for processor design

Sets a new performance standard

- Exploits parallelism while achieving high frequency
- Supercomputer attributes with extreme floating point capabilities
- Sustains high memory bandwidth with smart DMA controllers

Designed for natural human interaction

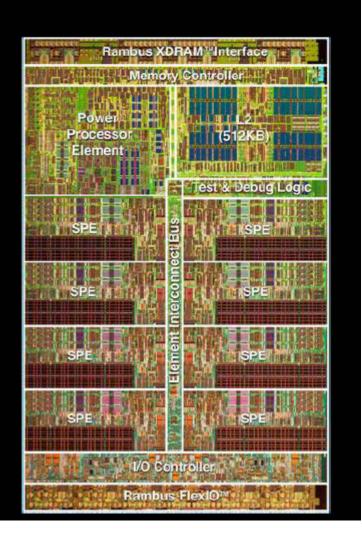
- Photo-realistic effects
- Predictable real-time response
- Virtualized resources for concurrent activities

Designed for flexibility

- Wide variety of application domains
- Highly abstracted to highly exploitable programming models
- Reconfigurable I/O interfaces
- Virtual trusted computing environment for security

Cell Synergy

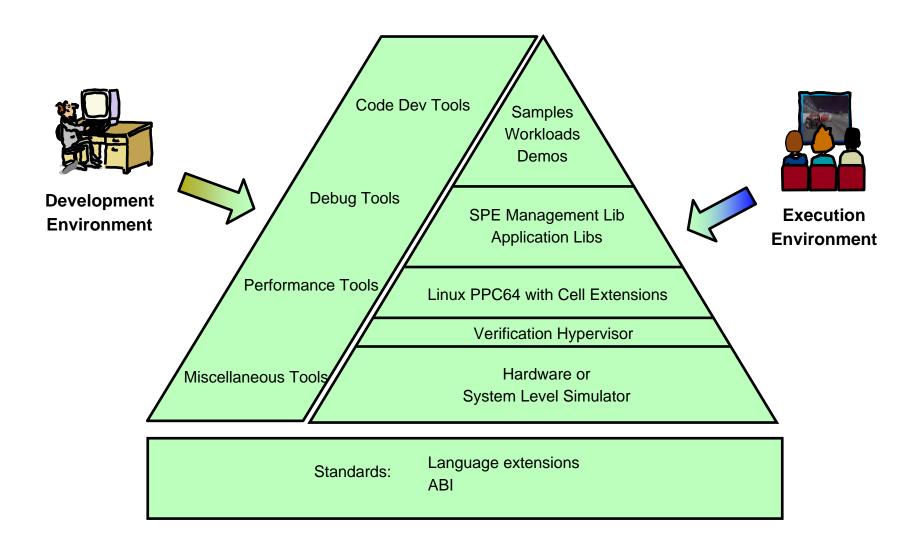
- Cell is not a collection of different processors, but a synergistic whole
 - Operation paradigms, data formats and semantics consistent
 - Share address translation and memory protection model
- PPE for operating systems and program control
- SPE optimized for efficient data processing
 - SPEs share Cell system functions provided by Power Architecture
 - MFC implements interface to memory
 - Copy in/copy out to local storage
- PowerPC provides system functions
 - Virtualization
 - Address translation and protection
 - External exception handling
- EIB integrates system as data transport hub



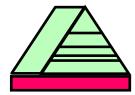
Cell Hardware Components

Highlights (3.2 GHz)

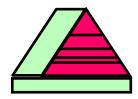
- 241M transistors
- 235mm2
- 9 cores, 10 threads
- >200 GFlops (SP)
- >20 GFlops (DP)
- Up to 25 GB/s memory B/W
- Up to 75 GB/s I/O B/W
- >300 GB/s EIB
- Top frequency >4GHz (observed in lab)



Cell Software Environment



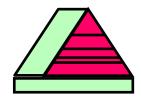
Cell Software Environment


CBE Standards

- Application Binary Interface Specifications
 - Defines such things as data types, register usage, calling conventions, and object formats to ensure compatibility of code generators and portability of code.
 - SPE ABI
 - Linux for CBE Reference Implementation ABI
- SPE C/C++ Language Extensions
 - Defines standardized data types, compiler directives, and language intrinsics used to exploit SIMD capabilities in the core.
 - Data types and Intrinsics styled to be similar to Altivec/VMX.
- SPE Assembly Language Specification

System Level Simulator

Cell BE – full system simulator


- Uni-Cell and multi-Cell simulation
- User Interfaces TCL and GUI

Cell Broadband Engine - An Introduction

- Cycle accurate SPU simulation (pipeline mode)
- Emitter facility for tracing and viewing simulation events

SPE Management Library

SPEs are exposed as threads

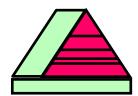
- SPE thread model interface is similar to POSIX threads.
- SPE thread consists of the local store, register file, program counter, and MFC-DMA queue.
- Associated with a single Linux task.
- Features include:
 - Threads create, groups, wait, kill, set affinity, set context
 - Thread Queries get local store pointer, get problem state area pointer, get affinity, get context
 - Groups create, set group defaults, destroy, memory map/unmap, madvise.
 - Group Queries get priority, get policy, get threads, get max threads per group, get events.
 - SPE image files opening and closing

SPE Executable

- Standalone SPE program managed by a PPE executive.
- Executive responsible for loading and executing SPE program. It also services assisted requests for I/O (eg, fopen, fwrite, fprintf) and memory requests (eg, mmap, shmat, ...).

Optimized SPE and Multimedia Extension Libraries

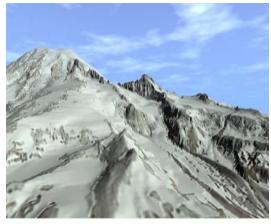
- Standard SPE C library subset
 - optimized SPE C99 functions including stdlib c lib, math and etc.
 - subset of POSIX.1 Functions PPE assisted
- Audio resample resampling audio signals
- FFT 1D and 2D fft functions
- gmath mathematic functions optimized for gaming environment
- image convolution functions
- intrinsics generic intrinsic conversion functions
- large-matrix functions performing large matrix operations
- matrix basic matrix operations
- mpm multi-precision math functions
- noise noise generation functions
- oscillator basic sound generation functions
- sim simulator only function including print, profile checkpoint, socket I/O, etc ...
- surface a set of bezier curve and surface functions
- sync synchronization library
- vector vector operation functions


Sample Source

- cesof the samples for the CBE embedded SPU object format usage
- spu_clean cleans the SPU register and local store
- spu_entry sample SPU entry function (crt0)
- spu_interrupt SPU first level interrupt handler sample
- spulet direct invocation of a spu program from Linux shell
- sync
- simpleDMA / DMA
- tutorial example source code from the tutorial
- SDK test suite

Workloads

- FFT16M optimized 16 M point complex FFT
- Oscillator audio signal generator


Cell Broadband Engine - An Introduction

- Matrix Multiply matrix multiplication workload
- VSE_subdiv variable sharpness subdivision algorithm

Bringup Workloads / Demos

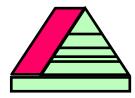
- Numerous code samples provided to demonstrate system design constructs
- Complex workloads and demos used to evaluate and demonstrate system performance

Terrain Rendering Engine

Geometry Engine

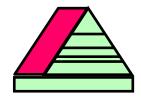
Physics Simulation

Subdivision Surfaces


Code Development Tools

- GNU based binutils
 - From Sony Computer Entertainment
 - gas SPE assembler
 - gld SPE ELF object linker
 - ppu-embedspu script for embedding SPE object modules in PPE executables
 - misc bin utils (ar, nm, ...) targeting SPE modules
- GNU based C/C++ compiler targeting SPE
 - From Sony Computer Entertainment
 - retargeted compiler to SPE
 - Supports common SPE Language Extensions and ABI (ELF/Dwarf2)
- Cell Broadband Engine Optimizing Compiler (executable)
 - IBM XLC C/C++ for PowerPC (Tobey)
 - IBM XLC C retargeted to SPE assembler (including vector intrinsics) highly optimizing
 - Prototype CBE Programmer Productivity Aids
 - Auto-Vectorization (auto-SIMD) for SPE and PPE Multimedia Extension code
 - spu_timing Timing Analysis Tool

Bringup Debug Tools

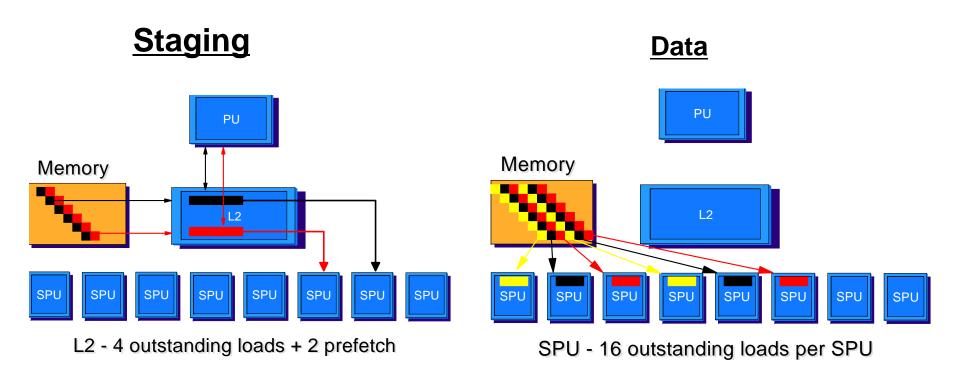


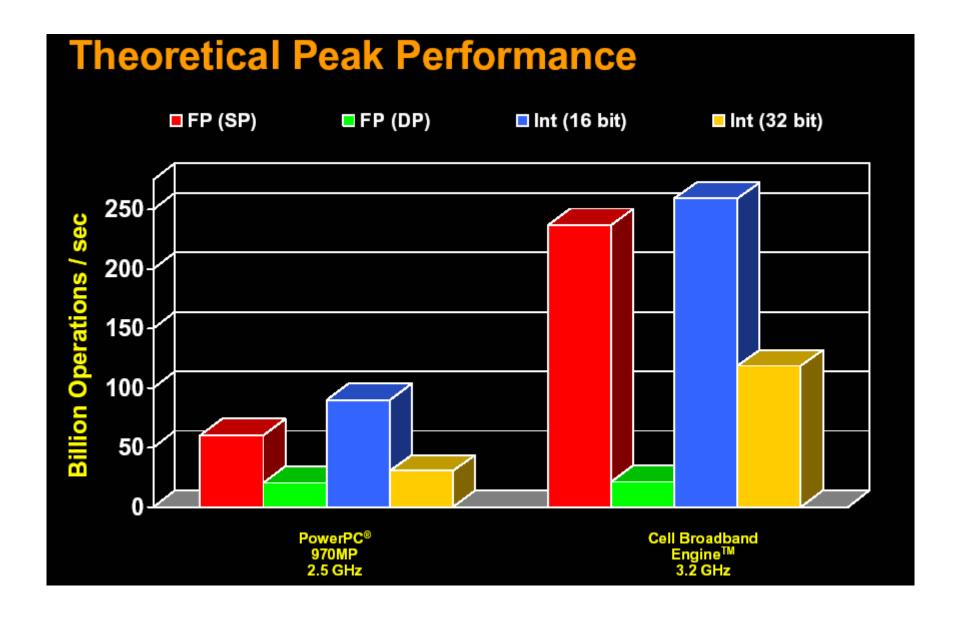
GNU gdb

- Multi-core Application source level debugger supporting PPE multithreading, SPE multithreading, interacting PPE and SPE threads
- Three modes of debugging SPU threads
 - Standalone SPE debugging
 - Attach to SPE thread
 - Thread ID output when SPU_DEBUG_START=1

SPE Performance Tools (executables)

- Static analysis (spu_timing)
 - Annotates assembly source with instruction pipeline state
- Dynamic analysis (CBE System Simulator)
 - Generates statistical data on SPE execution
 - Cycles, instructions, and CPI
 - Single/Dual issue rates
 - Stall statistics
 - Register usage
 - Instruction histogram


Cell Performance Characteristics


Why Cell processor is so fast?

Key Architectural Reasons

- Parallel processing inside chip
- Fully parallelized and concurrent operations
- Functional offloading
- High frequency design
- High bandwidth for memory and IO accesses
- Fine tuning for data transfer

Cell BE Performance Summary

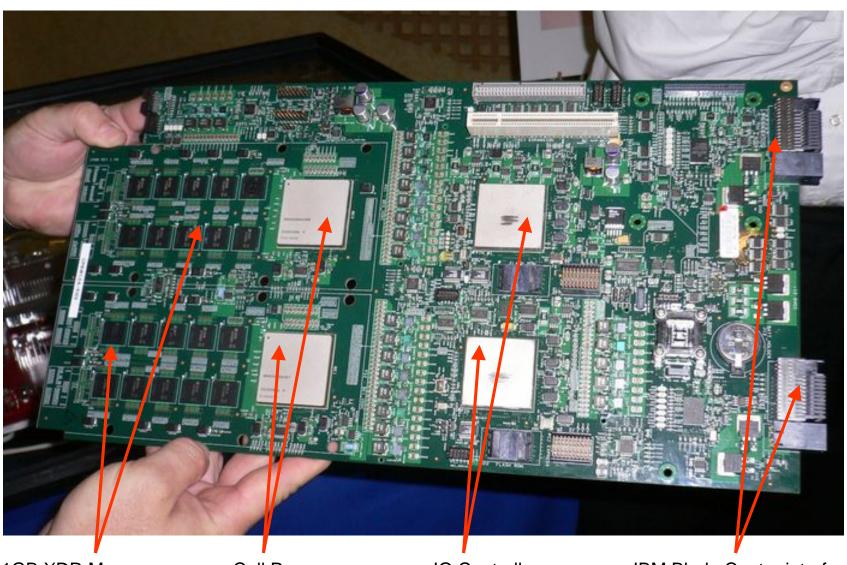
Туре	Algorithm	3.2 GHz GPP	3.2 GHz Cell	Cell Perf Advantage
HPC	Matrix Multiplication (S.P.)	24 Gflops (w/SIMD)	200 GFlops* (8SPEs)	8x
	Linpack (S.P.)	16 GFlops (w/SIMD)	156 GFlops* (8SPEs)	9x
	Linpack (D.P.): 1kx1k matrix	7.2 GFlops (IA32/SSE3)	9.67 GFLops* (8SPEs)	1.3x
graphics	Transform-light	170 MVPS (G5/VMX)	256 MVPS** (per SPE)	12x
	TRE	1 fps (G5/VMX)	30 fps* (Cell)	30x
security	AES encryp. 128-bit key	1.03 Gbps	2.06Gbps** (per SPE)	16x
	AES decryp. 128-bit key	1.04 Gbps	1.5Gbps** (per SPE)	11x
	TDES	0.12 Gbps	0.16 Gbps** (per SPE)	10x
	DES	0.43 Gbps	0.49 Gbps** (per SPE)	9x
	SHA-1	0.85 Gbps	1.98 Gbps** (per SPE)	18x
video processing	mpeg2 decoder (CIF)		1267 fps* (per SPE)	
ļ.:g	mpeg2 decoder (SDTV)	354 fps (IA32)	365 fps** (per SPE)	 8x
	mpeg2 decoder (HDTV)		73 fps* (per SPE)	

Source: Cell Broadband Engine Architecture and its first implementation – A performance view, http://www-128.ibm.com/developerworks/library/pa-cellperf/

** Simulation results

Notes: * Hardware measurement

Key Performance Characteristics


- Cell's performance is about an order of magnitude better than GPP for media and other applications that can take advantage of its SIMD capability
 - Performance of its simple PPE is comparable to a traditional GPP performance
 - its each SPE is able to perform mostly the same as, or better than, a GPP with SIMD running at the same frequency
 - key performance advantage comes from its 8 de-coupled SPE SIMD engines with dedicated resources including large register files and DMA channels
- Cell can cover a wide range of application space with its capabilities in
 - floating point operations
 - integer operations
 - data streaming / throughput support
 - real-time support
- Cell microarchitecture features are exposed to not only its compilers but also its applications
 - performance gains from tuning compilers and applications can be significant
 - tools/simulators are provided to assist in performance optimization efforts

Cell Blade

The First Generation Cell Blade

1GB XDR Memory

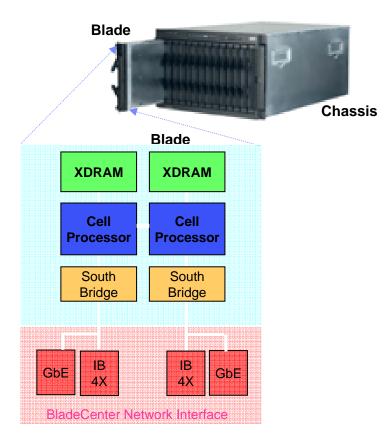
Cell Processors

IO Controllers

IBM Blade Center interface

Cell Blade Overview

Blade


- Two Cell BE Processors
- 1GB XDRAM
- BladeCenter Interface (Based on IBM JS20)

Chassis

- Standard IBM BladeCenter form factor with:
 - 7 Blades (for 2 slots each) with full performance
 - 2 switches (1Gb Ethernet) with 4 external ports each
- Updated Management Module Firmware.
- External Infiniband Switches with optional FC ports.

Typical Configuration (available today from E&TS)

- eServer 25U Rack
- 7U Chassis with Cell BE Blades, OpenPower 710
- Nortel GbE switch
- GCC C/C++ (Barcelona) or XLC Compiler for Cell (alphaworks)
- SDK Kit on http://www-128.ibm.com/developerworks/power/cell/

Cell Application Affinity

Cell Application Affinity – Target Applications

Cell Broadband Engine

- Non-homogeneous coherent multi-Processor
 - Dual-threaded control-plane processor
 - 8 independent data-plane processors
 - Thread-level parallelism
- SIMD processing architecture
 - 128-entry, 128-bit register files
 - Pipelined execution units
 - Branch hint
 - Data-level parallelism
- Rich integer instruction set
 - Word, halfword, byte, bit
 - Boolean
 - Shuffle
 - Rotate, shift, mask
- Single-precision floating point
- Double-precision floating point
- 256KB SPU local stores
 - Asynchronous DMA/main memory interface
 - Channel interface
 - Single-cycle load/store to/from registers
- High-bandwidth internal bus
 - 96 bytes transferred per dock
 - 100+ outstanding transfers supported
- Coherent bus interface
 - Up to 30 GB/s out, 25 GB/s in
 - Direct attach of another Cell
 - Can be configured as non-coherent
- Non-coherent bus interface
 - Up to 10GB/s out, 10 GB/s in
- 25+ GB/s XDR memory interface

Accelerated Functions

- Signal processing
- Image processing
- Audio resampling
- Noise generation
- Sound oscillation
- Digital filtering
- Curve and surface evaluation
- FFT
- Matrix mathematics
- Vector mathematics
- Game Physics / Physics simulation
- Video compression / decompression
- Surface subdivision
- Transform-light
- Graphics content creation
- Security encryption / decryption
- Pattern matching
- Language parsing
- TCP/IP offload
- Encoding / decoding
- Parallel processing
- Real time processing
- ...

Target Applications

- Medical imaging / visualization
- Drug discovery
- Petroleum reservoir modeling
- Seismic analysis
- Avionics
- Air traffic control systems
- Radar systems
- Sonar systems
- Training simulation
- Targeting
- Defense and security IT
- Surveillance
- Secure communications
- LAN/MAN Routers
- Network processing
- XML and SSL acceleration
- Voice and pattern recognition
- Video conferencing
- Computational chemistry
- Climate modeling
- Data mining and analysis
- Media server
- Digital content creation
- Digital content distribution
- ...

200GF/s total *

Internal Interconnect:

Coherent ring structure

•300+ GB/s total internal interconnect bandwidth •DMA control to/from SPEs

memory requests

supports >100 outstanding

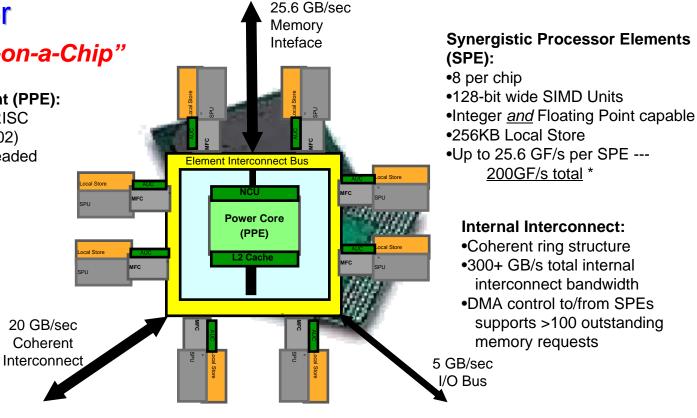
Cell Processor

"Supercomputer-on-a-Chip"

Power Processor Element (PPE):

•General Purpose, 64-bit RISC Processor (PowerPC 2.02)

•2-Way Hardware Multithreaded


•L1: 32KB I; 32KB D

•L2:512KB

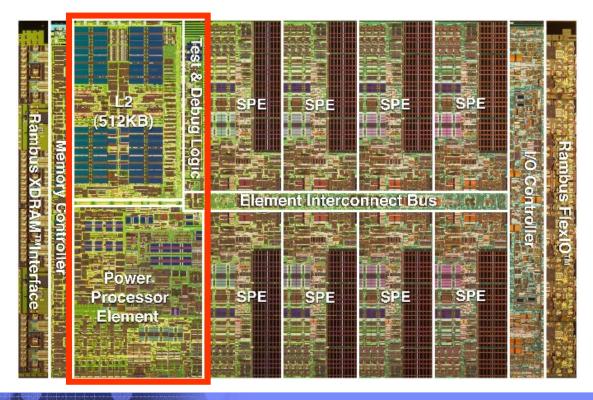
Coherent load/store

•VMX

•3.2 GHz

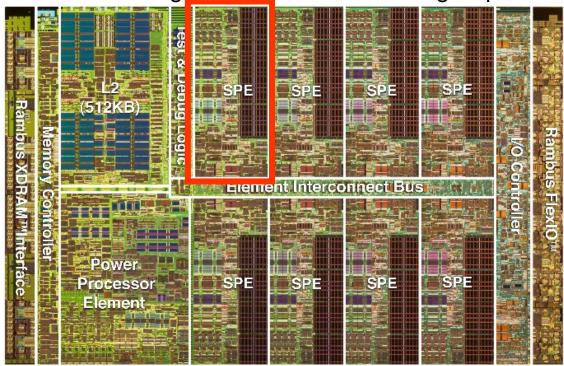
External Interconnects:

- •25.6 GB/sec BW memory interface
- •2 Configurable I/O Interfaces
 - Coherent interface (SMP)
 - Normal I/O interface (I/O & Graphics)
 - •Total BW configurable between interfaces
 - •Up to 35 GB/s out
 - •Up to 25 GB/s in

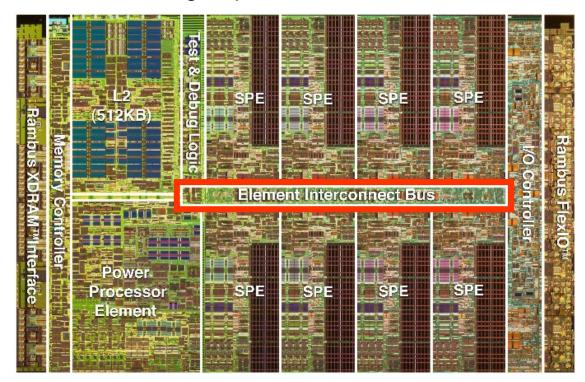

Memory Management & Mapping

- •SPE Local Store aliased into PPE system memory
- MFC/MMU controls SPE DMA accesses
 - Compatible with PowerPC Virtual Memory architecture
 - •S/W controllable from PPE MMIO
- •Hardware or Software TLB management
- SPE DMA access protected by MFC/MMU

Power Processor Element


- PPE handles operating system and control tasks
 - 64-bit Power Architecture[™] with VMX
 - In-order, 2-way hardware simultaneous multi-threading (SMT)
 - Coherent Load/Store with 32KB I & D L1 and 512KB L2

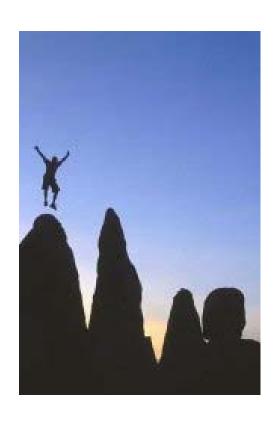
Synergistic Processor Element


- SPE provides computational performance
 - Dual issue, up to 16-way 128-bit SIMD
 - Dedicated resources: 128 128-bit RF, 256KB Local Store
 - Each can be dynamically configured to protect resources
 - Dedicated DMA engine: Up to 16 outstanding requests

Element Interconnect Bus

- EIB data ring for internal communication
 - Four 16 byte data rings, supporting multiple transfers
 - 96B/cycle peak bandwidth
 - Over 100 outstanding requests

Internal Bandwidth Capability


- Each EIB Bus data port supports 25.6GBytes/sec* in each direction
- The EIB Command Bus streams commands fast enough to support 102.4 GB/sec for coherent commands, and 204.8 GB/sec for non-coherent commands.
- The EIB data rings can sustain 204.8GB/sec for certain workloads, with transient rates as high as 307.2GB/sec between bus units

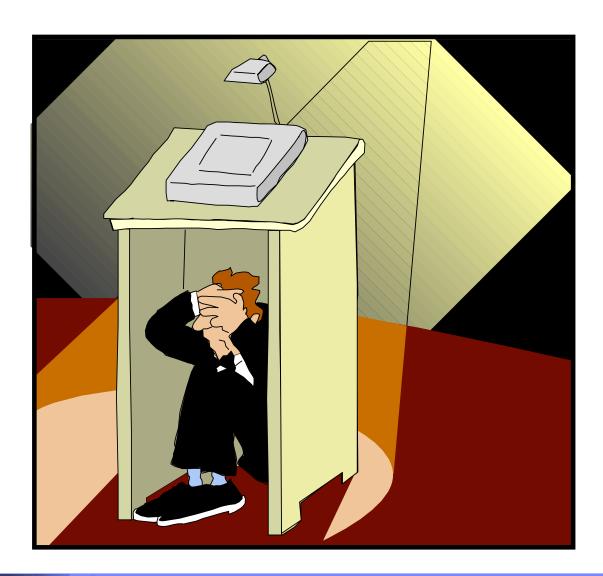
Despite all that available bandwidth...

^{*} The above numbers assume a 3.2GHz core frequency – internal bandwidth scales with core frequency

Why IBM for HPC

- Advanced processor technologies, innovative system designs, and elegant packaging
- Leadership performance and top positioning in worldwide supercomputing*
- A continuum of granular solution platforms that scale from the desktop to the world's highest performance HPC systems*

Select the system sized to your needs and designed with features for:


- •Meeting the challenges
- High performance and versatility of your most demanding applications

*http://www.top500.org

Questions...?

piotr.pietrzak@pl.ibm.com

Special notices

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY 10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Many of the features described in this document are operating system dependent and may not be available on Linux. For more information, please check: http://www.ibm.com/systems/p/software/whitepapers/linux_overview.html

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document should verify the applicable data for their specific environment.

Revised January 19, 2006

Special notices (cont.)

The following terms are registered trademarks of International Business Machines Corporation in the United States and/or other countries: AIX, AIX/L, AIX/L(logo), alphaWorks, AS/400, BladeCenter, Blue Gene, Blue Lightning, C Set++, CICS, CICS/6000, ClusterProven, CT/2, DataHub, DataJoiner, DB2, DEEP BLUE, developerWorks, DirectTalk, Domino, DYNIX, DYNIX/ptx, e business(logo), e(logo)business, e(logo)server, Enterprise Storage Server, ESCON, FlashCopy, GDDM, i5/OS, IBM, IBM(logo), ibm.com, IBM Business Partner (logo), Informix, IntelliStation, IQ-Link, LANStreamer, LoadLeveler, Lotus, Lotus Notes, Lotusphere, Magstar, MediaStreamer, Micro Channel, MQSeries, Net.Data, Netfinity, NetView, Network Station, Notes, NUMA-Q, Operating System/2, Operating System/400, OS/2, OS/390, OS/400, Parallel Sysplex, PartnerLink, PartnerWorld, Passport Advantage, POWERparallel, Power PC 603, Power PC 604, PowerPC, PowerPC(logo), PowerPC 601, Predictive Failure Analysis, pSeries, PTX, ptx/ADMIN, RETAIN, RISC System/6000, RS/6000, RT Personal Computer, S/390, Scalable POWERparallel Systems, SecureWay, Sequent, ServerProven, SpaceBall, System/390, The Engines of e-business, THINK, Tivoli, Tivoli(logo), Tivoli Management Environment, Tivoli Ready(logo), TME, TotalStorage, TURBOWAYS, VisualAge, WebSphere, xSeries, z/OS, zSeries.

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: Advanced Micro-Partitioning, AIX 5L, AIX PVMe, AS/400e, Chipkill, Chiphopper, Cloudscape, DB2 OLAP Server, DB2 Universal Database, DFDSM, DFSORT, e-business(logo), e-business on demand, eServer, Express Middleware, Express Portfolio, Express Servers, Express Servers and Storage, GigaProcessor, HACMP, HACMP/6000, I5/OS (logo), IBMLink, IBM TotalStorage Proven, IMS, Intelligent Miner, iSeries, Micro-Partitioning, NUMACenter, ON DEMAND BUSINESS logo, OpenPower, POWER, Power Architecture, Power Everywhere, Power Family, Power PC, PowerPC Architecture, PowerPC 603e, PowerPC 604, PowerPC 750, POWER2, POWER2 Architecture, POWER3, POWER4, POWER4+, POWER5, POWER5+, POWER6, POWER6+, Redbooks, Sequent (logo), SequentLINK, Server Advantage, ServeRAID, Service Director, SmoothStart, SP, System i, System j5, System p5, System Storage, System z, System z9, S/390 Parallel Enterprise Server, Tivoli Enterprise, TME 10, TotalStorage Proven, Ultramedia, VideoCharger, Virtualization Engine, Visualization Data Explorer, X-Architecture, z/Architecture, z/9.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark in the United States, other countries or both.

Linux is a trademark of Linus Torvalds in the United States, other countries or both.

Microsoft, Windows, Windows NT and the Windows logo are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Intel, Intel Xeon, Itanium and Pentium are registered trademarks or trademarks of Intel Corporation in the United States and/or other countries.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).

NetBench is a registered trademark of Ziff Davis Media in the United States, other countries or both.

AltiVec is a trademark of Freescale Semiconductor, Inc.

Other company, product and service names may be trademarks or service marks of others.

Revised January 19, 2006

Notes on benchmarks and values

The IBM benchmarks results shown herein were derived using particular, well configured, development-level and generally-available computer systems. Buyers should consult other sources of information to evaluate the performance of systems they are considering buying and should consider conducting application oriented testing. For additional information about the benchmarks, values and systems tested, contact your local IBM office or IBM authorized reseller or access the Web site of the benchmark consortium or benchmark vendor.

IBM benchmark results can be found in the IBM System p5, ~ p5, pSeries, OpenPower and IBM RS/6000 Performance Report at http://www.ibm.com/servers/systems/p/hardware/system_perf.html.

All performance measurements were made with AIX or AIX 5L operating systems unless otherwise indicated to have used Linux. For new and upgraded systems, AIX Version 4.3 or AIX 5L were used. All other systems used previous versions of AIX. The SPEC CPU2000, LINPACK, and Technical Computing benchmarks were compiled using IBM's high performance C, C++, and FORTRAN compilers for AIX 5L and Linux. For new and upgraded systems, the latest versions of these compilers were used: XL C Enterprise Edition V7.0 for AIX, XL C/C++ Enterprise Edition V7.0 for AIX, XL FORTRAN Enterprise Edition V9.1 for AIX, XL C/C++ Advanced Edition V7.0 for Linux, and XL FORTRAN Advanced Edition V9.1 for Linux. The SPEC CPU95 (retired in 2000) tests used preprocessors, KAP 3.2 for FORTRAN and KAP/C 1.4.2 from Kuck & Associates and VAST-2 v4.01X8 from Pacific-Sierra Research. The preprocessors were purchased separately from these vendors. Other software packages like IBM ESSL for AIX, MASS for AIX and Kazushige Goto's BLAS Library for Linux were also used in some benchmarks.

For a definition/explanation of each benchmark and the full list of detailed results, visit the Web site of the benchmark consortium or benchmark vendor.

TPC http://www.tpc.org
SPEC http://www.spec.org

LINPACK http://www.netlib.org/benchmark/performance.pdf

Pro/E http://www.proe.com
GPC http://www.spec.org/gpc
NotesBench http://www.notesbench.org
VolanoMark http://www.volano.com

STREAM http://www.cs.virginia.edu/stream/SAP http://www.sap.com/benchmark/

Oracle Applications http://www.oracle.com/apps_benchmark/

PeopleSoft - To get information on PeopleSoft benchmarks, contact PeopleSoft directly

Siebel http://www.siebel.com/crm/performance_benchmark/index.shtm

Baan http://www.ssaglobal.com

Microsoft Exchange http://www.microsoft.com/exchange/evaluation/performance/default.asp

Veritest http://www.veritest.com/clients/reports

Fluent http://www.fluent.com/software/fluent/index.htm

TOP500 Supercomputers http://www.top500.org/

Ideas International http://www.ideasinternational.com/benchmark/bench.html

Storage Performance Council http://www.storageperformance.org/results

Revised January 19, 2006