

Cisco HPC and Infiniband solutions

ICFA DDW06

Dré Van Brussel

Sr Mgr Business Development Data Centre & HPC Technologies Cisco Emerging Markets - CEE

October 2006

Data Center challenges : budget vs capability

Business and Technology Scenario

To prevent the data center from consuming the entire IT budget, increased manageability and utilization through standardization and automation are essential.

© Meta Group Inc, 2003

Take Aways

HPC Maps into Cisco's Core Area of Strength

Shift to server clusters; Increased requirement for multiple networks (IPC+Mngt), Storage convergence, Enterprise class management and security

SFS and Catalyst *combined* provide most complete HPC clustering solution

SFS extends Cisco into performance sensitive environments; Enables high performance storage over IPC network; Catalyst for broad market and management of SFS clusters

Cisco is leading manufacturer of InfiniBand clustering equipment

Hundreds of clusters running across automotive, aerospace, banking, media, oil & gas; Hands on experience building World's largest standard server (and InfiniBand) cluster (Sandia Thunderbird; 4400 SFS attached servers)

Cisco Server Fabric Switching provides most complete InfiniBand HPC solution

Family of four SFS 7000 switches supporting clusters from tens to thousands of servers; host adapters&drivers; HPC management software and diagnostics

Only Network Manufacturer with Global Channels, Expertise, Support for HPC

Joint Sourcing and Engagements with Server Vendors; Internal Cluster lab; Best Practicing Guides; 2000 tech support professionals; >300,000 customer issues resolve every month

cisco

Take Aways With Ongoing Scalability Testing

Cisco has <u>nine month lead time</u> with large IB clusters Sandia Thunderbird 4400 node cluster built in June'05 One of three >1000 node IB clusters Cisco built in '05 Cisco is <u>only vendor with access to large IB</u> cluster today Daily remote and direct access to 4400 node cluster Enables continuous improvement of HPC Subnet Manager Scalability testing with LUSTRE and IB attached storage Cisco has ~1000 InfiniBand nodes inside it's own test labs Cisco's developers in US, EMEA and Asia have access around the clock Cisco is <u>directly funding the open source community</u> to increase stability of large scale cluster Two grants already made in 2006 for MVAPICH development

Cisco is already developing unified management across large scale InfiniBand and Ethernet connected clusters

Network Computing is Supercomputing

Supercomputer performance at a fraction of the cost

- <u>Clusters</u> of Industry standard servers with Scalable, Standards-based Network interconnect
 - [Gigabit] Ethernet

Infiniband

- **Demands on the Network :**
 - Storage volumes measured in Peta-Bytes of Data
 - Real-time Visualization in the 100s of Mbps

CPU efficiency can demand network latency of <10µs latency

Networked Supercomputer

Why Infiniband?

Technology Benefits	 Standards-based high speed performance capabilities Economics for server consolidation and virtualization Appeals to decision makers who are looking for server I/O optimized technology
New Markets	 Extends Cisco's solution for HPC and grid computing space to performance-sensitive applications New connectivity option appeals to server infrastructure technologist
Customer Demand	 Broad deployment across enterprise, research and geography (auto, aerospace, retail, financial) in addition to traditional university and lab deployment Enterprise customers are in pilot and production deployment phases

cisco

Infiniband Overview

Standards-based interconnect

http://www.infinibandta.org

Channelized, connection-based interconnect, <u>optimized for high</u> <u>performance computing</u>

Supports <u>server and storage</u> <u>attachments</u>

Bandwidth Capabilities (SDR/DDR/QDR)

1x—2.5/5 Gbps: 2/4 Gbps actual data rate (base rate for InfiniBand)

4x—10/20 Gbps: 8/16 Gbps actual data rate

12x—30/60 Gbps: 24/28 Gbps actual data rate

Built-in RDMA as core capability for inter-CPU communication

cisco

Standard Ethernet NIC Architecture

With RDMA and OS Bypass

Ethernet vs Infiniband in HPC Clusters: typical Performance Results

	procs	nodes	time (hours)	speedup	
	1 proc (estimated)		close to 2 days		
	8	8	6:45:00	1	
	16	8	3:54:10	1.7 / 2	
	16	16	3:33:05	1.9/2	
Ethernet	32	16	2:12:06	3.1/4	
	32	32	2:06:50	3.2/4	
	64	32	1:30:07	4.5/8	
	64	64	1:25:22	4.7/8	
	96	96	1:45:20	3.8 / 12	
	128	128	2:03:41	3.2 / 16	
	500000000000000000000000000000000000000				10.5.1 0.1
	procs	nodes	time (hours)	speedup	IB/Eth. Ratio
	procs 8	nodes 8	time (hours) 6:32:34	speedup 1	IB/Eth. Ratio 1,03
	procs 8 16	nodes 8	time (hours) 6:32:34 3:41:16	speedup 1 1.8 / 2	1,03 1,06
	90005 8 16 16	nodes 8 8 16	time (hours) 6:32:34 3:41:16 3:20:40	speedup 1 1.8/2 2.0/2	1,03 1,06 1,06
	ргося 8 16 16 32	nodes 8 8 16	time (hours) 6:32:34 3:41:16 3:20:40 1:52:41	speedup 1 1.8/2 2.0/2 3.5/4	1,03 1,06 1,06 1,06 1,17
Infiniband	910CS 8 16 16 32 32	nodes 8 16 16 32	time (hours) 6:32:34 3:41:16 3:20:40 1:52:41 1:40:47	speedup 1 1.8/2 2.0/2 3.5/4 3.9/4	1,03 1,06 1,06 1,06 1,17 1,26
Infiniband	ргося 8 16 16 32 32 32 64	nodes 8 16 16 32 32	time (hours) 6:32:34 3:41:16 3:20:40 1:52:41 1:40:47 1:01:39	speedup 1 1.8/2 2.0/2 3.5/4 3.9/4 6.4/8	1,03 1,06 1,06 1,06 1,17 1,26 1,46
Infiniband	ргосs 8 16 16 32 32 64 64	nodes 8 16 16 32 32 64	time (hours) 6:32:34 3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50	speedup 1 1.8/2 2.0/2 3.5/4 3.9/4 6.4/8 7.3/8	IB/Eth. Ratio 1,03 1,06 1,06 1,17 1,26 1,46 1,53
Infiniband	ргося 8 16 16 32 32 64 64 96	nodes 8 16 16 32 32 64 48	time (hours) 6:32:34 3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50 0:47:31	speedup 1 1.8/2 2.0/2 3.5/4 3.9/4 6.4/8 7.3/8 8.3/12	IB/Eth. Ratio 1,03 1,06 1,06 1,17 1,26 1,46 1,53
Infiniband	ргосs 8 16 16 32 32 32 64 64 96 96	nodes 8 16 16 32 32 64 48 96	time (hours) 6:32:34 3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50 0:47:31 0:42:13	speedup 1 1.8/2 2.0/2 3.5/4 3.9/4 6.4/8 7.3/8 8.3/12 9.3/12	IB/Eth. Ratio 1,03 1,06 1,06 1,17 1,26 1,46 1,53 2,50
Infiniband	Procs 8 16 16 32 32 64 64 96 96 128	nodes 8 8 16 16 32 32 64 48 96 128	time (hours) 6:32:34 3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50 0:47:31 0:42:13 0:33:02	speedup 1 1.8/2 2.0/2 3.5/4 3.9/4 6.4/8 7.3/8 8.3/12 9.3/12 11.9/16	IB/Eth. Ratio 1,03 1,06 1,06 1,17 1,26 1,46 1,53 2,50 3,74

From days to minutes .

IB outperforms Ethernet from 3 to 374%

Session Number Presentation_ID 18

Introducing the Cisco Server Fabric Switching Products

cisco

DDR : Cisco SFS 7000D Infiniband Switches

Cisco SFS 7000D DDR and SDR switches delivery low-latency, non-blocking fabric SFS 7000D - 24 ports SFS 7012D – 144 ports SFS 7024D – 288 ports High availability and serviceability DDR delivers 20Gbps bandwidth to x86/Opteron PCI-Express systems Lower end-to-end systems latency **Future-proof investment** backwards compatibility using DDR-to-SDR switching Ideal Technology for demanding high-performance applications

Blade Chassis Offerings – some examples

IBM BladeCenter / BC-H

Integrated Switch Modules for BC1 & BC-H

1x / 4x Host Channel Adapter daughter-cards for blades

Only on IBM GPL – manufactured by Cisco

Dell Blade Chassis

Pass-through module for Dell Blade Chassis

PCI-Express InfiniBand HCA daughter-card

Only available on Dell GPL

- 16.7 kW / module
- 50 kW N + 1 with 2 rack positions
- User replaceable fans
- Chilled Water

Legendary Reliability

Problem: Fragmented Solutions for High Performance Computing

Application Integration and Certification

Job Scheduling

Cluster Configuration, Management, Control and Monitoring

Message Passing Interface (MPI)

Do-it-yourself testing, integration and certification with multiple fabrics, MPI and protocol stacks

......

CISCO

No application awareness of network capabilities

Hand-scripted management per network (IPC vs. I/O vs. storage)

Multiple MPI stacks – no standards to build off of, more options to certify

Multiple Fabric Options – no uniform integration of capabilities

cisco

Cisco's Multifabric Strategy

Only vendor to offer complete multifabric solution. **Multi-fabric Management Bring Ethernet Ease-of-Use to InfiniBand** Single management tool and APIs for large diverse fabrics **Multi-fabric Protocols** Unify MPI across fabrics with Open MPI. Unify RDMA across fabrics with Open Fabrics. **Multi-Fabric Cisco Certification** GigE, InfiniBand, 10GigE **HPC Storage Certification** Multi-Fabric I/O Unified Fabric over IB with I/O gateways. **IB-attached storage for HPC**

Cisco Solution – Driving the Evolution o High Performance Computing

From	То
No application validation	Standards enable rapid testing and certification
No link between network and schedulers	Open APIs for bandwidth monitoring and feedback
Too many MPI Choices	Consolidated MPI
No management – hand-scripted and managed	Uniform management over IPC, management, storage network
Fabric-specific implementations	Fabric Agnostic

+ World-class Service and Support for High Performance Computing

Driving Open Standards Open Fabrics, Open RDMA and Open MPI

Problem: Proprietary protocol stacks multiply options for application development and complicate certifications

Solution: Cisco moves strategic focus to Open Fabrics and Open MPI

Benefits: Delivers one stack, fully interoperable between vendors, accelerating application development for the ISV and deployment and certification for the end-user

Verticals in HPC

High Performance Computing

Universities and Labs

Education – universities, labs, foundations

Government – research, military, science

Enterprise

Petroleum - Oil and Gas Exploration

Manufacturing – Automotive, Aerospace

Bio-sciences

Financial – Data mining and market modeling

CISCO

Enterprise HPC Application Areas and Verticals

Performances Results

	procs	nodes	time (hours)	speedup	
	1 proc (e	stimated)	close to 2 days		
	8	8	6:45:00	1	
	16	8	3:54:10	1.7 / 2	
	16	16	3:33:05	1.9/2	
Ethernet	32	16	2:12:06	3.1/4	
	32	32	2:06:50	3.2/4	
	64	32	1:30:07	4.5/8	
	64	64	1:25:22	4.7/8	
	96	96	1:45:20	3.8 / 12	
	128	128	2:03:41	3.2 / 16	
	procs	nodes	time (hours)	speedup	IB/Eth. Ratio
	8	8	6:32:34	1	1.03
		-			
	16	8	3:41:16	1.8/2	1,06
	16 16	8	3:41:16 3:20:40	1.8/2 2.0/2	1,06
	16 16 32	8 16 16	3:41:16 3:20:40 1:52:41	1.8 / 2 2.0 / 2 3.5 / 4	1,06 1,06 1,17
Infiniband	16 16 32 32	8 16 16 32	3:41:16 3:20:40 1:52:41 1:40:47	1.8 / 2 2.0 / 2 3.5 / 4 3.9 / 4	1,06 1,06 1,17 1,26
Infiniband	16 16 32 32 64	8 16 16 32 32	3:41:16 3:20:40 1:52:41 1:40:47 1:01:39	1.8 / 2 2.0 / 2 3.5 / 4 3.9 / 4 6.4 / 8	1,06 1,06 1,17 1,26 1,46
Infiniband	16 16 32 32 64 64	8 16 16 32 32 64	3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50	1.8/2 2.0/2 3.5/4 3.9/4 6.4/8 7.3/8	1,06 1,06 1,17 1,26 1,46 1,53
Infiniband	16 16 32 32 64 64 96	8 16 16 32 32 64 48	3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50 0:47:31	1.8 / 2 2.0 / 2 3.5 / 4 3.9 / 4 6.4 / 8 7.3 / 8 8.3 / 12	1,06 1,06 1,17 1,26 1,46 1,53
Infiniband	16 16 32 32 64 64 96 96	8 16 32 32 64 48 96	3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50 0:47:31 0:42:13	1.8/2 2.0/2 3.5/4 3.9/4 6.4/8 7.3/8 8.3/12 9.3/12	1,06 1,06 1,17 1,26 1,46 1,53 2,50
Infiniband	16 16 32 32 64 64 96 96 128	8 16 32 32 64 48 96 128	3:41:16 3:20:40 1:52:41 1:40:47 1:01:39 0:55:50 0:47:31 0:42:13 0:33:02	1.8 / 2 2.0 / 2 3.5 / 4 3.9 / 4 6.4 / 8 7.3 / 8 8.3 / 12 9.3 / 12 11.9 / 16	1,06 1,06 1,17 1,26 1,46 1,53 2,50 3,74

From days to minutes .

IB outperforms Ethernet from 3 to 374%

Session Number Presentation_ID

2005 Cisco Systems, Inc. All rights reserve

18

Case Study: Leading Research Facility High Performance Computing Cluster - NCSA

Application:

- High Performance Computing Cluster
- Compute time outsourced to Commercial Enterprises (major oil & gas)

Environment:

520 Dell Servers

3:1 Blocking ratio

6x SFS 7008

29x SFS 7000

Benefits:

Compelling Price/ Performance

Measured MPI latency 5.2µs

Case Study : Bio-Informatics Cluster - 1,068 Node Supercomputer

cisco

1,068-node fully Non-Blocking Fault Tolerant IB Cluster

Key decision factors:

Cisco benchmarked and tuned customer MPI application

Best operational experience with large clusters – best references

"Rapid Service" architecture proved 2-min vs. 2-day MTTR.

Case Study : Sandia National Labs – 4096 Nodes Cluster

High Performance SuperComputing Cluster

Environment:

4096 Dell Servers 50% Blocking Ratio 8 x SFS 7048 256 x SFS 7000

Benefits:

Compelling Price/Performance

Largest IB Cluster ever built -8,192 Processor, 60TFlop Cluster

Expected to be 3rd Largest Supercomputer in the world

........

CISCO

Additional Information

www.cisco.com/go/hpc

www.cisco.com/go/serverswitching

www.cisco.com/go/datacenter

