HEP Networking and Grids in Japan

on 9-11 October 2006 at Krakow ICFA-WS Yukio.Karita@KEK.jp

Outline

- National R&E Networks in Japan
 - Domestic
 - International
- HEP Networking in Japan
- HEP Computing in Japan
 - Belle Data Analysis, Lattice-QCD, ...
- Grids in Japan
- Grids at KEK

R&E Networks in Japan

- Production Networks
 - SuperSINET/SINET operated by NII, Ministry of Education and Science
 - Domestic/International
 - 10Gbps to MANLAN, 2.5Gbps to LA
 - APAN operated by APAN-Consortium
 - International
 - 10Gbps to LA, 2.5Gbps to HK, 2.5Gbps to KR, ...
- Testbeds
 - JGN2 operated by NICT, Ministry of Communication
 - Domestic/International
 - 10Gbps to Starlight
 - IEEAF
 - International
 - 10Gbps to PacificWave

SuperSINET and JGN2

- National R&E Networks
- SuperSINET: Production network for sciences
 - Since Jan 2002
 - 10Gbps IP connection and p2p GigE's in Japan
 - 10Gbps IP to NY since Dec 2002
 - 2.5Gbps IP to LA since Apr 2005
- JGN2: Testbed for the research of the network
 - Since Apr 2004
 - 10Gbps L2 between Tsukuba and Tokyo (incl. T-LEX)
 - 10Gbps L2 to Starlight in Sep 2005

SuperSINET

- 10Gbps IP/MPLS Backbone
 - ■Star-topology OC192 connection from Hub
 - ■Non-shared 10Gbps
 - ■MPLS-VPN's are configured on request
- GigE / 10GE Bridges for peer-connection
 - ■lambdas separate from the 10G IP/MPLS connection
 - ■Lightwave permanent path
 - ■L1 p2p service
 - ■Tagged-VLAN's can run on a path
- Operation of Optical Cross Connect (OXC) for fiber / wavelength
 - switching
- Operational from 4th January, 2002

Only some nodes are shown.

SuperSINET Network Configuration

SuperSINET is composed of multiple lambdas constructed with dark fibers and DWDM.

SuperSINET/SINET->SINET3

- SuperSINET (will end in Mar 2007)
 - 10G IP/MPLS
 - Dedicated λ 's (GbE and OC48)
 - End-end bandwidth guaranteed
 eg. 10G IP/MPLS + 10xDedicated GbE for KEK
- SINET3 (will start in Apr 2007)
 - 10GbE or 2 x 10GbE or OC48 or GbE
 - In-band VLAN's
 - End-end bandwidth not guaranteed
 - eg. 2x10GbE 2xOC48 for KEK

SINET3: Change in Network Structure

- Two tier structure with edge and core layers.
- The edge layer consists of edge layer 1 switches with Ethernet interfaces to accommodate users' equipment.
- The core layer consists of core layer 1 switches and high-performance IP routers and constitutes a nationwide reliable backbone network.

SINET3: Nationwide Multi-layer Network

SINET3 Traffic Accommodation for Layers 1 to 3

• Edge L1 switch:

- Users' L1/L2/L3 traffic is accommodated and transferred to a 10Gbps(STM) line.
- L1 traffic is assigned a dedicated bandwidth and separated from L2/L3 traffic.
- L2/L3 traffic shares the remaining bandwidth by L2 multiplexing.

Core L1 switch:

- L1 path is switched internally.
- L2/L3 traffic is forwarded to and received back from IP router.

• IP Router:

- IP/MPLS traffic is forwarded. L2 traffic is encapsulated using MPLS.

SuperSINET->SINET3

- Major changes
 - DWDM device → L1 switch
 - Protected circuit → Non-protected circuit (L2)
 - Protected circuit (L1)'s are provided if requested and if approved, but having them lowers the bandwidth for the shared traffic.
 - So we decided to have all the HEP traffic on the shared bandwidth.
 - Having end-end L2 paths becomes very easy.
 - It is said that if the bandwidth usage becomes high the bandwidth will be upgraded, but how immediately can it be made?

HEP networking

- Production Network
 - Domestic
 - SuperSINET/SINET → SINET3
 - Wide-area Ethernet (for some non-SINETuniv's)
 Creating VLANs for Grid VOs is very easy.
 - International
 - SINET
 - APAN (for connections in Asia-Pacific region)
 - Dedicated line (to BINP, will be terminated soon.)
- Testbed
 - JGN2

Our use of JGN2

- Testbed
 - Participate in the UltraLight.
 - Evaluate the advantages of "international broadband L2 connection"
 - in Grid, in security, in performance, ...
 - KEK-CERN, KEK-FNAL, ...
 - Evaluate GMPLS (or on-demand L1)
 - And propose some in the upgrade of the SINET3
- L2 paths for peering
 - Direct peering with APAN
 - Direct peering with ASCC

KEK connected to JGN2 and to Starlight with 10GE in September 2005.

HEP computing in Japan

- In addition to the central computer system, KEK has two other computer systems dedicated to:
 - Belle Data Analysis
 - Lattice QCD
- Universities have some amount of computing resources.

The Belle Collaboration

>300 researchers from 55 institutes

- Aomori Univ.
- Budker Inst. of Nucl. Physics, RU
- Chiba Univ.
- Chuo Univ.
- Univ. of Cincinnati
- Univ. of Frankfurt
- Gyeongsang Nat'l Univ., KR
- Univ. of Hawaii
- Hiroshima Inst. of Tech.
- Hiroshima Coll. of Maritime Tech.
- Inst of Cosmic Ray Res., U of Toky
 Sugiyama Woman's Coll.
- IHEP, CN
- ITEP. RU
- Joint Crystal Collab. Group
- Kanagawa Univ.
- KEK
- Korea Univ., KR
- Krakow Inst of Nucl Physics
- Kyoto Univ.
- Kyungpook Nat'l Univ (CHEP), KB Tokyo Metropolitan Univ.
- Univ. of Melbourne.. AU
- Nagasaki Inst. of Applied Science
- Nagaya Univ.
- Nara Woman's Univ
- Nat'l Central Univ., TW
- Nat'l Kaoshiung Univ, TW
- Nat'l Lien-Ho Coll. of Tech., TW
- Nat'l Taiwan Univ., TW

- Nihon Dental Coll.
- Niigata Univ.
- Osaka Univ.
- Osaka City Univ.
- Panjab Univ., IN
- Peking Univ., CN
- Saga Univ.
- Seoul Nat'l Univ., KR
- Univ. of Sci. and Tech. of China
- Sungkyunkwan Univ., KR Univ. of Sydney, AU
- Tata Inst., IN
- Toho Univ.
- Tohoku Univ.
- Tohoku-gakuin Univ.
- Univ. of Tokyo
- Tokyo Inst. of Tech.
- Tokyo Univ. of Agriculture and Tech.
- Toyama Nat'l Coll. of Maritime Tech
- Univ. of Tsukuba
- Utkal Univ., IN
- Virginia Polytechnic Inst (VPI)
- Yokkkaichi Univ.
- Yonsei Univ., KR

- ■Installed in March 23. 2006
- **■**History of the Computer System for Belle

Performance\Year	1997- (4years)	2001- (5years)	2006- (6years)
Computing Server (SPECint2000 rate)	~100 (ws)	~1,250 (WS+PC)	~42,500 (PC)
Disk Capacity (TB)	~4	~9	1,000 (1PB)
Tape Library Capacity (TB)	160	620	3,500 (3.5PB)
Work Group server (# of hosts)	3+(9)	11	80+16FS
User Workstation (# of hosts) Moore's	25WS +68X Law 1.5y=twice	23WS +100PC 4y=~6.3 5y=~10	128PC


```
1 Enclosure = 10 nodes/7U space

1 rack = 50 nodes

25 racks = 4 arrays
```

Computing Server (CS)

- CS+WG servers(80)
 = 1208 nodes=2416CPU
 =45,662 SPEC CINT 2k rate
 =8.7THz
- DELL Power Edge 1855Xeon3.6GHz x2,memory 1GB
- Linux(CentOS/CS,REL/WGS)

- Storage System (SS)
 - -disk-
 - 1,000TB,
 42FileServ.
 - Nexan + ADTeX +SystemWks
 - SATAII 500G dr.

×~2000 (~1.8 failures/day?)

– HSM = 370TB non HSM (no Bck)

= 630TB

- Storage System (SS)
 - -tape-
 - HSM
 - 3.5PB + 60drv + 13srv
 - SAIT 500GB/volume
 - 30MB/s drive
 - Petaserv(SONY)

- WFS backup
 - 90TB + 12drv + 3srv
 - LTO3 400GB/volume
 - NetVault

System usage

- User Workstations (PC) are used for the network terminal.
- Users login to Work Group Server (WGS; 4~5persons/host)
- 1208 Computing Servers divided into 3 LSF (Batch System)
 clusters.
- WGS(80svr) shares WFS(16srv+80TB) as NFS user home directories.
- Not-so-frequently-modified applications/Libraries are held in 50 NFS servers. 1140 CS shares the NFS server.
- Exp. Data (Many and Big size)
 - is transferred between CS(1140) and Storage Servers (42)
 - by using a Belle self-made simple TCP/socket application.
 - Data is managed by cooperation with DB system.
- Storage System ⇔Computing server transfer performance spec.
 - CS/WGS 1/3(540) \Leftrightarrow SS = 10GB/s
 - CS 2/3(1080) \Leftrightarrow SS/HSM = 0.5GB/s
 - SS/HSM \Leftrightarrow SS/nonHSM = 0.5GB/s

Universities in Belle eg. Nagoya University

- Storage for Belle at KEK
 - Disk 1PetaBytes
 - Tape 3.5PetaBytes
- Storage and computers for Belle at Nagoya-U
 - Disk 530TeraBytes
 - Linux PC farm ~1200GHz
- Use of computers at Nagoya-U
 - Belle data analysis
 - Generation of Monte-Carlo samples
 - Simulation for detector development
- Data transfer between KEK and Nagoya-U
 - Use of L2 connction in SuperSINET→SINET3
 - Requiring more than 1Gbps

KEK B Factory: Belle Experiment

- SRB servers for real data storage system has been
 - Current active data sharing
 - among KEK, U. Melbourne (Australia), and Nagoya Univ.
 - Target storage space 120 TB
 - files registered to MCAT
 - ~ 423 files as of Sep. 6

The Belle SRB system

GRID deployment at KEK

- Bare Globus
 - We started with this in 2001
 - No production use, only R&D
- SRB (2002)
 - GSI authentication or password
 - SRB-DSI became available
 - Works as SRM for the SRB world from LCG side
 - Performance test will be done
 - Performance tests among RAL, CC-IN2P3 and KEK is on going
- Gfarm
 - Collaboration with AIST
 - Lattice QCD GRID

- LCG (2004-
 - JP-KEK-CRC-01
 - For R&D
 - JP-KEK-CRC-02
 - For production
 - Interface to HPSS
 - Test bed (JP-KEK-CRC-00)
 - Staff training and tests
- We have our own GRID CA
 - In production since this January
 - Accredited by APGRID PMA
- NAREGI test bed
 - Under construction

Pre-production LCG site for Belle (JP-KEK-CRC-01)

- Pre-production site was built up with LCG2.7 March, 2006
- Certification by APROC for registration to GOCDB has been done at the end of March
- New VO: Belle has been registered to the LCG/EGEE as a global VO.
- Initial collaboration sites expected:
 - Melbourne, ASGC, Krakow, Jozef Stefan Institute (Slovenia), IHEP Vienna
 - Nagoya U.

LCG Deployment plan at KEK

- New Computer Systems
 - Central Information System since Feb. 20. '06
 - Belle Computer System since Mar. 23. '06
- 1st Phase
 - LCG and SRB for production usage are available on the Grid System in the new Central Information System.
 - Not for public usage, but for supporting projects
 - Under system maintenance in contract with IBM-Japan
 - WN: 36 nodes x 2 = 72 CPU
 - Storage: Disk (2TB) + HPSS(~200TB)
 - Supported VO: Belle, APDG, Atlas_J
 - Service start in ~ May 2006
- 2nd Phase
 - Full support in the Belle production system

Belle GRID

- Starting slowly using SRB and LCG
 - LCG site: JP-KEK-CRC-02
- Data distribution service using SRB-DSI
 - Belle already have a few PBs data in total including 100s TB DST and MC
 - Bulk file register helps us: Sregister
 - we do not move any of them
 - Benefits both for native SRB users and LCG users
- VO is supported by KEK
 - Nagoya, Melbourne, Academia Sinica, Krakow and etc

New Supercomputer System at KEK

From 2006 March 1st

- Large Scale Simulation for particle and nuclear physics research and accelerator-related scientific studies
 - Hitachi SR11000 K1 System,
 - ■16 nodes
 - ■2.15 Tflops (Theoretical peak)
 - Large memory capacity 32GB/64 GB/node
 - IBM BlueGene Solution,
 - ■10 racks
 - ■57.3 Tflops (Theoretical peak)
 - Massive parallel system for Lattice QCD simulation

About 50 times faster than former Supercomputer system (Hitachi SR8000 100 node system)

HEPnet-J/sc

- HEPnet-J/sc
 - A VPN constructed in SuperSINET
 - Connecting majorlattice QCD sites inJapan
 - KEK, Tsukuba, Osaka, Kyoto, Kanazawa, Hiroshima
 - File mirroring

Lattice QCD Data Grid

In lattice QCD, gauge field configuration is essential data

- Generated by Monte Carlo algorithms
 - Full QCD requires large computational resources
- Once generated,

various correlation functions can be measured

- Hadron spectra, decay constants, matrix elements, etc.
- Exotic hadrons, interaction between hadrons
- Data size
 - Degree of freedom: SU(3)×site(x,y,z,t)×direction(4),
 - statistics O(1000)
- Various actions, sizes, parameters
 - Extrapolations to continuum, small quark mass, large volume limits
 - Comparison for consistency check
- Sharing gauge configuration is now world movement

ILDG and JLDG

- ILDG: International Lattice DataGrid
 - International organization for data sharing
 - Developing mark-up language, middleware
 - Officially started in June 2006
 - Several sites are already providing data:
 - LQA(Lattice QCD Archive)@Tsukuba Univ.
 - Gauge Connection (NERSC, USA)
- JLDG: Japan Lattice DataGrid
 - National community to share lattice data on HEPnet-J/sc
 - Provides data to ILDG
 - Developping file system and middleware (interface to ILDG)

- Apr. 2003 MEXT funded NAREGI 5 years Project
- Development of Grid infrastructure and an application for promotion of national economy
- Target application is nano science and technology for new material design
- Players
 - Computing & networking: NII, AIST, TITEC
 - Material scientists: IMS, U. Tokyo, Tohoku U., Kyushu U., KEK, ...
 - Companies: Fujitsu, Hitachi, NEC
- Distributed facility: Computing Grid up to 100 TFLOPS in total
- Extended to 2010 as a part of National Peta-scale Computing Project

Collaboration

Infrastructural

International

Cyber-Science Infrastructure (CSI)

NII-REO (Repository of Electronic **Journals and Online Publications**

GeNii (Global Environment for Networked Intellectual Information)

Virtual Labs Live Collaborations

Deployment of NAREGI Middleware

UPKI: National Research PKI Infrastructure

Management Body / Education & Training

SuperSINET and Beyond: Lambda-based Academic **Networking Backbone** Tohoku-U Nagoya-U [Titech, Waseda-U, KEK, etc.)

Restructuring Univ. IT Research Resources Extensive On-Line Publications of Results

Feedback Industry/Societal

NAREGI

Outputs

NAREGI

- What we expect for NAREGI
 - Better quality
 - Easier deployment
 - Better support in the native language
- What we need but still looks not in NAREGI
 - File/replica catalogue and data GRID related functionalities
 - Need more assessments
- Comes a little bit late
 - Earlier is better for us
 - We need something working today!
- Require commercial version of PBS for β 1

gLite and NAREGI interoperability

- NAREGI has much interests on interoperability because they came late and they decided to establish in their side
- First meeting at CERN
 - March 2006
 - NAREGI, gLite, and KEK
- Second meeting at GGF Tokyo

KEK plan

- VO hosted at KEK using LCG
 - Belle, APDG, ILC
- Ask NAREGI to implement LFC on their middleware
 - We assume job submission between them will be realized soon
 - Share the same file/replica catalogue space between LCG/gLite and NAREGI
 - Move data between them using GridFTP
 - Try something by ourselves
 - Brute force porting of LFC on NAREGI
- NAREGI<->SRB<->gLite will be tried also
- Assessments will be done for
 - Command level compatibility (syntax) between NAREGI and gLite
 - Job description languages
 - Software in experiments, especially ATLAS
 - How depends on LCG/gLite?

Domestic support

- KEK will try to support domestic institutions centrally
 - We seek funding and technical schemes
 - Proposal to funding agencies has been done to establish HEPNET-J VO for the test
 - Installation and operation
 - » Send technicians and engineers from KEK temporally for the installation
 - » Operation and monitor centrally

Future strategy

- ILC, International Linear Collider, will be a target
 - interoperability among gLite, OSG and NAREGI will be required
- ILC Japan people want to start to work with French collaborators as soon as possible using LCG
 - What we do relating AIL?
 - DESY already hosts some VO's for ILC
- SRB and ROD (Resource on Demand)s in the future

APDG

- Asia Pacific Data GRID
- Collaboration among Academia Sinica(TW), Center for HEP-Korea, University of Melbourne and KEK
- Regular meetings, workshops and conferences
- KEK is seeking tighter collaboration with ASGC(Academia Sinca Grid Computing Centre),
 - GOC in Asia

KEK-ICEPP Relation

- ICEPP (International Center for Elementary Particle Physics), U of Tokyo is the tier-2 center of ATLAS in Japan
 - No tier-1 in Japan
- KEK and ICEPP are collaborating each other on GRID related issue
- Universities in ATLAS will get a technical support from KEK
- CA services are provided by KEK

Strategy on GRID

- Deployment at KEK for major groups
 - BELLE
 - ILC
- University support
 - education and training
 - Deployment at smaller centers
 - HEPNET-J VO

Thank you!