Computing Infrastructure for Research in Asia Simon C. Lin (林誠謙) Academia Sinica, Taipei, Taiwan 11529 Simon.Lin@cern.ch 9 Oct 2006, DDW06, Krakow ### Importance of Global Grid e-Infrastructure in Asia - The exponential growth of ICT as Enabling Technology in the last 40 years will drive the global economy in the 21st century - A pull force, such as building Grid e-Infrastructure, that could integrate the global computing resources will optimise the power of ICT leading to a Paradigm Shift - The ubiquity of Data Deluge in the global context is the ushering source of applications to run on Grid - This will provide Leapfrogging opportunity for Asia ### The Data Deluge - A large novel: I Mbyte; The Bible: 5 Mbytes - A Mozart symphony (compressed): 10 Mbytes - A digital mammogram: 100 Mbytes - OED on CD: 500 Mbytes - Digital movie (compressed): 10 Gbytes - Annual production of refereed journal literature (~20 k journals; ~2 M articles): I Tbyte - Library of Congress: 20 Tbytes - The Internet Archive (10 B pages) (From 1996 to 2002): 100 Tbytes - Annual production of information (print, film, optical & magnetic media): I500 to 3000 Pbytes - All Worldwide Telephone communication in 2002: 19.3 ExaBytes - Moore's Law enables instruments and detectors to generate unprecedented amount of data in all scientific disciplines ### Large Hadron Collider Data - 40 million collisions per second - After filtering, 100 collisions of interest per second - A Megabyte of digitised information for each collision = recording rate of 0.1 Gigabytes/sec - 10 l collisions recorded each year = 10 Petabytes/year of data - Data: ~15 Petabytes a year Processing: ~ 100,000 of today's PC's (200+ TeraFlops) - Networking: 10 40 Gb/s to all big centres - computing centres, which were isolated in the past, will now be connected, uniting the computing resources of particle physicists in the world using GRID technology! ### LCG Service/ Data Hierarchy #### Tier-0 - the accelerator centre - Data acquisition & initial processing - Long-term data curation - Distribution of data \rightarrow Tier-1 centres ### LCG Service/ Data Hierarchy #### Tier-0 - the accelerator centre - Data acquisition & initial processing - Long-term data curation - Distribution of data → Tier-1 centres Tier-1 - "online" to the data acquisition process → high availability - Managed Mass Storage → grid-enabled data service - Data-heavy analysis - National, regional support LCG Status report Ian.Bird@cern.ch LHCC Open Meeting; 28th June 2006 ### LCG Service/ Data Hierarchy #### Tier-0 - the accelerator centre - Data acquisition & initial processing - Long-term data curation - Distribution of data → Tier-1 centres Tier-1 - "online" to the data acquisition process → high availability - Managed Mass Storage → grid-enabled data service - Data-heavy analysis - National, regional support Tier-2: ~120 centres (40-50 federations) in ~29 countries - Simulation - End-user analysis batch and interactive LCG Status report Ian.Bird@cern.ch LHCC Open Meeting; 28th June 2006 ### LCG depends on 2 major science grid infrastructures Ica ### The LCG service runs & relies on grid infrastructure provided by: EGEE - Enabling Grids for E-Science OSG - US Open Science Grid # HEP is Strategic, even in Asia BEIJING-LCG2 LCG_KNU - There are regional and national Grid activities in Asia, but no common mandate to meet in a global scale like HEP - PAKGRID The regional Grid activities in Asia tend to be loosely coupled and are not capable to create deep collaborative TIFR-LCG2 relationship - Other common source of applications could be strategic in Asia: Avian Flu mitigation, Digital Libraries/ Archives, Natural Resources, Earth Observation, and even SME in Asia ### Challenges in Asia - Large geographic area segmented by sea - Weaker collaborative scientific tradition within the region, thus, the culture for collaboration to be built - Largely, focus on its own Grid technology development rather than participating global infrastructure building in the first place - No coherent, coordinated funding such as in Europe and US ### Are the Europe and US Helping? - Many activities from Europe: TEIN2/3, EU-China Grid, EU-India Grid, EU-SEA, Asia Federation in EGEE, etc - Activities from US: TransPAC, Gloriad, OSG - Perhaps, due to different funding sources and project objectives, the above activities do not have enough coordination among each projects - Difficult to build a single coordinating body in Asia # Luckily, WLCG/ EGEE/ OSG are Working Together in Asia ### WLCG/EGEE Asia-Pacific - 12 LCG sites and 3 EGEE sites in Asia Pacific - Academia Sinica Grid Computing Centre (ASGC) is acting as the coordinator, also - the WLCG Tier-1 Centre - WLCG/EGEE Operation Centre in Asia Pacific Region - Potential Sites - Thailand, Malaysia, Australia, New Zealand ■AP Federation now shares the e-Infrastructure with WLCG **Academia Sinica Grid Computing** ### **Plan for Taiwan Tier-1 Network** ### **AP Regional LCG Network** Just Build a New Link between TW-AU, reduce RTT from 380 to 138 ms via Singapore! - Solid lines between routers (circle) and switches (box) and networks are already exist. - Solid lines between T2 and routers / switches /networks are already exist and/or proposed. - Dashed line are currently planned by ASnet and will be installed in 2006/7. - Type-2 is "direct-connect" Type-1 is passing through 3rd party facility or 3rd party network ### WLCG/EGEE Asia Pacific Services by Taiwan - Production CA Services: production service from July 2003 - AP CIC/ROC: 9 sites 7 countries, > 400 CPUs - VO Infrastructure Support: APeSci and TWGrid - WLCG/EGEE Site Registration and Certification - Middleware and Operation Support - User Support: APROC Portal (<u>www.twgrid.org/aproc</u>) - MW and technology development - Application Development - Education and Training - Promotion and Outreach - Scientific Linux Mirroring and Services - APROC Goal - Provide deployment support facilitating Grid expansion - Maximize the availability of Grid services - APROC Goal - Provide deployment support facilitating Grid expansion - Maximize the availability of Grid services - APROC established in April 2005 - APROC Goal - Provide deployment support facilitating Grid expansion - Maximize the availability of Grid services - APROC established in April 2005 - Supports EGEE sites in Asia Pacific - 16 sites, 7 countries, > 700 CPUs (will grow >1,000 by end 2006) - Australia - Japan India - Korea F - Pakistan Singapore **Taiwan** RC - Resource Centre ROC - Regional Operations Centre CIC - Core Infrastructure Centre - APROC Goal - Provide deployment support facilitating Grid expansion - Maximize the availability of Grid services - APROC established in April 2005 - Supports EGEE sites in Asia Pacific - 16 sites, 7 countries, > 700 CPUs (will grow >1,000 by end 2006) - Australia Japan - Korea Pakistan Singapore Taiwan India - EGEE CIC - CIC-on-duty rotation: EGEE global operations - Monitoring tool development: GStat and GGUS Search - Centralized services - APROC Goal - Provide deployment support facilitating Grid expansion - Maximize the availability of Grid services - APROC established in April 2005 - Supports EGEE sites in Asia Pacific - 16 sites, 7 countries, > 700 CPUs (will grow >1,000 by end 2006) - Australia - Japan India Korea Pakistan Singapore Taiwan - EGEE CIC - CIC-on-duty rotation: - EGEE global operations - Monitoring tool development: GStat and GGUS Search - Centralized services - EGEE ROC - Monitoring, Diagnosis and Problem tracking deployment support - Security Coordination - Portal and documentation ROC - Regional Opera M/W release Site Registration ### APROC – daily operations | AsiaPacific | | | | | | | | | | | | | | | | | | |-------------|-----------|------------------------|--------------------------------|---------------------------|---------|--------------|----|----------|----------|----|----------|----------|--------------------------|----------|------------|----------|----------| | 1. | <u>ok</u> | TW-THU-HPC | ce.hpc.csie.thu.edu.tw | <u>0K</u> | 0 | 2.7.0 | Ī | <u>o</u> | 0 | ?? | <u></u> | 0 | W | ?? | ?? | X | <u>0</u> | | 2. | <u>SD</u> | INDIACMS-TIFR | ce.indiacms.res.in | $\underline{\mathrm{SD}}$ | X | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | X | ?? | | 3. | <u>CT</u> | NCP-LCG2 | penep04.nep.edu.pk | <u>CT</u> | 0 | 2.7.0 | Ī | 0 | 0 | 0 | 0 | X | $\underline{\mathbf{W}}$ | 0 | ?? | 0 | <u>0</u> | | 4. | <u>SD</u> | IN-DAE-VECC-01 | gridce01.tier2-kol.res.in | $\underline{\mathrm{SD}}$ | 0 | <u>302</u> | Ι | 0 | 0 | 0 | <u>o</u> | w | W | 0 | <u>III</u> | X | <u>o</u> | | 5. | <u>0K</u> | Taiwan-LCG2 | quanta, grid, sinica, edu, tw | <u>0K</u> | 0 | 3.0.0 | Ī | 0 | 0 | o | 0 | 0 | <u>o</u> | swd | ir: 01 | K (20 | 06-08-25 | | 6. | <u>CT</u> | JP-KEK-CRC-02 | rls02.cc.kek.jp | <u>CT</u> | 0 | 3.0.2 | Ī | 0 | 0 | 0 | 0 | X | W | 0 | ?? | 0 | <u>o</u> | | 7. | <u>JS</u> | TW-NCUHEP | grid01.phy.ncu.edu.tw | <u>JS</u> | X | 3.0.2 | Ī | 0 | 0 | 0 | 0 | 0 | 0 | 0 | <u>III</u> | 0 | <u>o</u> | | 8. | <u>ok</u> | Taiwan-IPAS-LCG2 | atlasce.phys.sinica.edu.tw | <u>0K</u> | 0 | 2.7.0 | Ī | 0 | 0 | 0 | 0 | 0 | $\underline{\mathbf{W}}$ | 0 | ?? | 0 | <u>0</u> | | 9. | <u>ok</u> | TOKYO-LCG2 | dgce0.icepp.jp | <u>0K</u> | 0 | 3.0.1 | Ī | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ?? | 0 | <u>0</u> | | 10. | <u>ok</u> | Taiwan-LCG2 | log00125.grid.sinica.edu.tw | <u>ok</u> | 0 | 2.7.0 | Ī | 0 | X | 0 | 0 | 0 | 0 | 0 | ?? | 0 | X | | 11. | <u>CT</u> | PAKGRID-LCG2 | CE.pakgrid.org.pk | <u>CT</u> | 0 | 3.0.2 | Ī | 0 | 0 | 0 | 0 | X | 0 | 0 | ?? | X | <u>0</u> | | 12. | <u>ok</u> | GOG-Singapore | melon.ngpp.ngp.org.sg | <u>ok</u> | 0 | 3.0.2 | Ī | 0 | X | 0 | 0 | 0 | <u>o</u> | 0 | ?? | X | X | | 13. | <u>JS</u> | Taiwan-NCUCC-LCG2 | ce.cc.ncu.edu.tw | <u>JS</u> | X | 2.7.0 | Ī | 0 | 0 | 0 | 0 | 0 | <u>o</u> | <u>o</u> | ?? | 0 | <u>o</u> | | 14. | <u>ok</u> | JP-KEK-CRC-01 | dg10.cc.kek.jp | <u>ok</u> | 0 | 2.7.0 | Ī | 0 | 0 | 0 | 0 | 0 | $\underline{\mathbf{W}}$ | <u>0</u> | ?? | 0 | <u>0</u> | | 15. | <u>ok</u> | <u>LCG KNU</u> | cluster50.knu.ac.kr | <u>0K</u> | <u></u> | 2.7.0 | Ī | <u>o</u> | 0 | 0 | <u>0</u> | 0 | <u>o</u> | <u>0</u> | ?? | X | <u>0</u> | | 16. | <u>ok</u> | TW-NIU-EECS-01 | niugce.grid.niu.edu.tw | <u>ok</u> | <u></u> | 3.0.2 | Ī | <u>o</u> | <u>0</u> | 0 | <u>o</u> | <u>o</u> | $\underline{\mathbf{W}}$ | <u>0</u> | ?? | <u>o</u> | <u>0</u> | | 17. | <u>ok</u> | Australia-UNIMELB-LCG2 | log-compute.hpc.unimelb.edu.au | <u>ok</u> | <u></u> | <u>3.0.2</u> | Ī | 0 | <u>0</u> | 0 | <u></u> | 0 | $\underline{\mathbf{W}}$ | <u>0</u> | ?? | <u>0</u> | <u>0</u> | ### **APROC Tickets Statistics** | | Statistic (Tot/Ave) | | | | | | |---------------|---------------------|--|--|--|--|--| | Open tickets | 34 | | | | | | | Close tickets | 777/51 | | | | | | | Total tickets | 811/54 | | | | | | # **Experiences from FTS performance/ stability evaluations (I)** - Goal is to prepare and validate T1-T2 production transfer readiness for WLCG. - Primary focus is on stability and not on maximum throughput - FTS testing is done in multiple phases - Functionality - Performance - Stability - Recommend using Oracle backend for serving massive data transfer requests - MySQL and Oracle backend are evaluated in parallel during the testing - Encounter deadlock sometimes in MySQL - Performance of Tokyo-LCG2 gain around 17% when migrate using Oracle backend # **Experiences from FTS performance/ stability evaluations (II)** - 1TB data files transfers to candidate service endpoint for performance evaluation - Stability testing are carried out to sustain data transfers for 3-5 days ### **T1-T2 FTS: Performance Results** Regional Centers: Tokyo-LCG2: 48 MB/sec KEK-LCG2 10 MB/sec Australia-UNIMELB-LCG2: 10 MB/sec KNU 37 MB/sec BEIJING-LCG2: 16 MB/sec Domestic: IPAS: 37 MB/sec TW-NIU-EECS-01: 4 MB/sec FTT: ~35 MB/sec NCU-HEP: 40 MB/s SRM or storage issues: PAKGRID, TIFR, NCP 1200 1000 800 600 400 200 ### **WLCG Services in Asia** From CERNCI to ALL SITES 20 Time (GMT) 9 10 11 12 13 14 15 16 17 18 19 Caltech_Load < T1_ASGC_Load ### **ARDA** - Goal: Coordinate to prototype distributed analysis systems for the LHC experiments using a grid. - ARDA-ASGC Collaboration: since mid 2003 - Building push/pull model prototype(2003) - Integrate Atlas/LHCb analysis tool to gLite(2004) Provide first integration testing and usage document on Atlas tools:Dial (2004) - CMS monitoring system development (2005) - Monitoring system to integrate RGMA & MonaLisa - ARDA/CMS Analysis Prototype: Dashboard - ARDA Taiwan Team: http://lcg.web.cern.ch/LCG/activities/arda/team.html - 4 FTEs participated: 2 FTEs at CERN, the other 2 are in Taiwan #### **Dissemination & Outreach** - International Symposium on Grid Computing from 2002 - TWGRID Web Portal - Grid Tutorial, Workshop & User Training: > 700 participants in past 10 events - Publication - Grid Café / Chinese (http://gridcafe.web.cern.ch/gridcafe/) | Event | Date | Attendant | Venue | | | | | |-----------------------------|-----------------|-----------|-------------------|--|--|--|--| | China Grid LCG Training | 16-18 May 2004 | 40 | Beijing, China | | | | | | ISGC 2004 Tutorial | 26 July 2004 | 50 | AS, Taiwan | | | | | | Grid Workshop | 16-18 Aug. 2004 | 50 | Shang-Dong, China | | | | | | NTHU | 22-23 Dec. 2004 | 110 | Shin-Chu, Taiwan | | | | | | NCKU | 9-10 Mar. 2005 | 80 | Tainan, Taiwan | | | | | | ISGC 2005 Tutorial | 25 Apr. 2005 | 80 | AS, Taiwan | | | | | | Tung-Hai Univ. | June 2005 | 100 | Tai-chung, Taiwan | | | | | | EGEE Workshop | Aug. 2005 | 80 | 20th APAN, Taiwan | | | | | | EGEE Administrator Workshop | Mar. 2006 | 40 | AS, Taiwan | | | | | | EGEE Tutorial and ISGC | 1 May, 2006 | 73 | AS, Taiwan | | | | | ### Asian Grid3/OSG since 2004 ### **OSG Related Activities of Taiwan** - 1st Grid3 system deployed in 2004, and migrate to OSG follow the formal release from 2005 - Major applications now are for HEP - CMS Tier3, and ATLAS Tier3 in Taiwan - CDF - general HPC IPAS Load last day - Interoperation between gLite and OSG - Integrating OSG Tier3 with gLite Tier2 resources, and the job submission from each other is available now **IPAS Ganglia** - Would like to join the efforts coordinated in GGF. - Operation & Monitoring ■ Total In-Core Memory Accounting Memory Used Memory Shared Memory Cached Memory Buffered Memory Swapped 06:00 demia Sinica Grid Computing IPAS CPU last dav ### OSG/LCG resource integration in Taiwan - Mature tech help integrating resources - GCB introduced to help integrating with OSG computing resources - CDF/OSG users can submit jobs by gliding-in into GCB box - Access ASGC T1 computing resources from "twgrid" VO - Customized UI to help accessing back-end storage resources - Help local users not ready for grid - HEP users access T1 resources Submit condor_glidein jobs to the Tier1 site Gate-keeper - When the glide-in jobs start, resources become part of the Condor pool - Headnode is notified about availability of new nodes and jobs pulled from the queue - Monitoring, Computing on Demand (CoD) etc. works like a native Condor farm - Jobs run in a single user mode ### e-Science Applications in Taiwan - Bioinformatics: mpiBLAST-g2 - Biomedicine: Distributing AutoDock tasks on the Grid using DIANE - Digital Archive: Data Grid for Digital Archive Longterm preservation - **Atmospheric Science** - Geoscience: GeoGrid for data management and hazards mitigation - Ecology Research and Monitoring: EcoGrid - **BioPortal** - Biodiversity: TaiBIF/GBIF - e-Science Application Framework Development # EGEE Biomed DC II – Large Scale Virtual Screening of Drug Design ### Biomedical goal - accelerating the discovery of novel potent inhibitors thru minimizing non-productive trialand-error approaches - improving the efficiency of high throughput screening ### Grid goal - massive throughput: reproducing a gridenabled in silico process (exercised in DC I) with a shorter time of preparation - interactive feedback: evaluating an alternative light-weight grid application framework (DIANE) ### EGEE Biomed DC II - Large Scale Virtual Screening of Drug Design ### **Biomedical goal** accelerating the discovery of novel potent inhibitors thru minimizing non-productive trial- # Distributed Data Management & Long-term Preservation of NDAP - Long-term Preservation - Automatic remote replication with 3 copies in different sites - Effective migration based on metadata - not just the digitized contents were archived, but als o their metadata, methods/procedures, standard format, and management information - Separation of data representation and presentation - Secure Access - Reduce the total cost of management - Data Management Framework could be shared for contentbased applications, e.g., federation etc. - Sustainable Operation and Services # SRB-based Data Grid System Architecture for NDAP ### SRM-SRB Development - Objectives - Middleware Persistence: Integrate SRB into the e-Science infrastructure (gLite+OSG) of Taiwan - Interoperation: - Approach & Focus - Use Case Collection and Analysis - Make use of the current SRM implementations as the code base - e.g., CERN Castor SRM, DESY/FNAL dCache SRM, LCG DPM, LBNL DRM, JLab SRM, etc. - Evaluate how authentication works in both SRM and SRB - Evaluate the similar services of gLite ### Success on a Worldwide scale - If we can bring together people from all over the world (whether they be physicists, biologists, computer scientists, climate researchers or) and they - Want to be part of building the "cyber infrastructure" or Grid environments or "e-science environments" for the future - Actively participate - Get benefit from the collaboration Then we will be succeeding Source: Vicky White ### Success on a Worldwide scale - If we can bring together people from all over the world (whether they be physicists, biologists, Some sort of coordinating structure is still needed in Asia! computer scientists, climate researchers or) and - Then we will be succeeding Source: Vicky White