Internet2 Networks, Current and Future

Rick Summerhill Director Network Research, Architecture, and Technologies Internet2

> International ICFA Workshop on HEP Networking, Grid and Digital Divide Issues 9 October 2006 National Academy of Arts and Sciences Cracow, Poland

> > INTERNET®

Krakow, What a Wonderful City!

Agenda

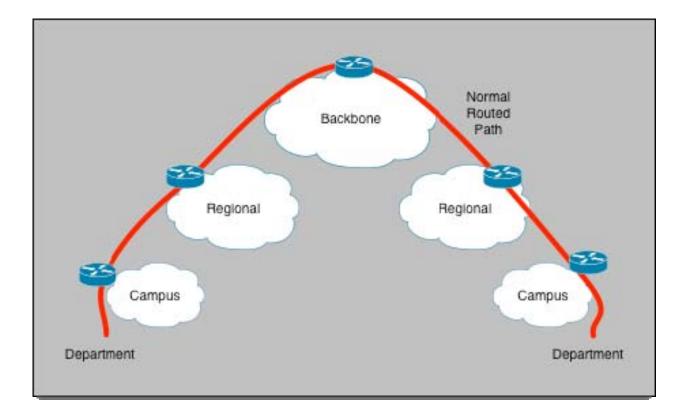
- The Existing Internet2 Network (Abilene)
 - History
 - The Network
 - Peering with International Networks
- The New Challenge
- The new Internet2 Network
 - A Broader Design
 - Topology
 - New Capabilities
 - Connections and Peerings
 - Other Projects

History

- With the end of NSFnet and beginning of privatization, the ability to support science applications was limited
- The vBNS days brought much better connectivity, especially to super computer centers
- Initial meetings of what was to become Internet2, a consortium of research universities, in 1996
 - There was a clear need to support the university research community
 - The Internet, even for "small" applications was not as robust as it is today
 - The university networking needs for science are not met today by the Internet protocols and likely will not be met in the near future

TERNET®

The Internet2 Network Abilene

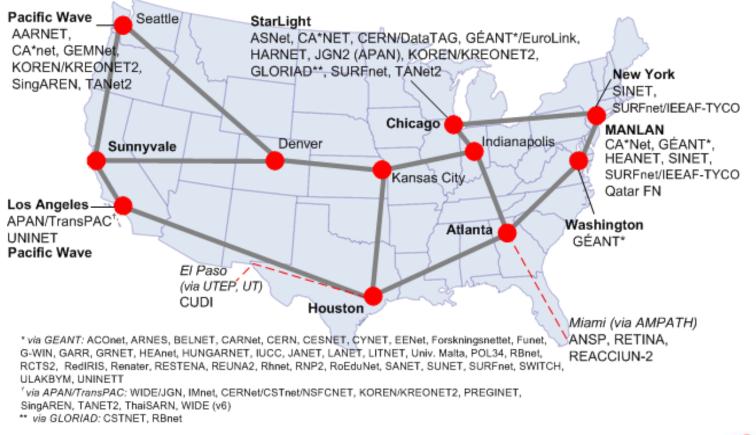

- First Internet2 network began in mid 1998 with first backbone (Abilene) at 2.5 Gbps (OC-48 SONET backbone)
 - Partnership with Qwest, Cisco, and Nortel
 - IP Network
- Backbone upgrade to 10 Gbps started I 2001 and completed in early 2003
 - Supported advanced services like IPv6 and Multicast
 - Focus on performance and reliability primarily for E-science applications

Current Internet2 Network (Abilene)

INTERNET® Rick Summerhill

National Architecture (Current)

Internet2 Connectors and Peers


- Connectors
 - 35 direct connections (OC-3c \rightarrow 10 Gbps)
 - 3 10 Gbps (10 GE) connections
 - 7 OC-48c connections & 5 GE connectors
 - 24 connected at OC-12c (622 Mbps) or higher
 - 246 Primary Participants research universities and labs
 - Cost recovery model
 - Regional to National
 - Campus to National
- Peerings
 - Connections through exchange points
 - 48 International agreements and 80+ International networks reachable through Abilene
 - Abilene supports transit for International peers
 - Peerings with other Federal Research and education networks in the US

INTERNET®

See: http://abilene.internet2.edu/

International Peers

Abilene International Network Peers

The Coming Challenge

- "Grid applications will incorporate in excess of 100,000 processors within 5 years."
 - Dr. Larry Smarr, "On Vector" Workshop, UCSD Feb 2006
- "The Global Information Grid will need to store and access exabytes of data on a real-time basis by 2010"
 - Dr. Henry Dardy, Optical Fiber Conference, Los Angeles, CA USA, Mar 2006
- "Each LHC experiment foresees a recorded raw data rate of 1 to several PetaBytes/year"
 - Dr. Harvey Neuman (Cal Tech)
- "US Bancorp backs up 100 TB financial data every night now."
 - David Grabski (VP Information Tech. US Bancorp), Qwest High Performance Networking Summit, Denver, CO. USA, June 2006.
- "The VLA facility is now able to generate 700 Gbps of astronomical data and will reach 3.2 Terabits per second by 2009."

INTERNET®

 Dr. Steven Durand, National Radio Astronomy Observatory, E-VLBI Workshop, MIT Haystack Observatory., September 2006.

The Networking Challenge

- Example: Large Scale Distributed Clusters 10,000 processor compute cluster
 - 4 Gbyte/processor memory, 1 GigE NIC
 - Burst capability = 10 Tbps
- Note: Parallel and distributed clusters are incorporating nodes faster than Moore's Law is reducing their size..
- Power requirements for single clusters will be too large to support in a single location moved to geographically distributed clusters

• How will they communicate?

- These reflect some fundamental design decisions/assumptions of the existing (and original) internet architecture that may not be applicable today, especially for e-science applications
 - The GENI initiative (NSF) hopes to construct a Global Environment for Network
 Innovation looking to the future
 - Need to examine new architectures for e-science applications now

The Dynamic Virtual Global Collaboratory

- Collaborating Virtual Organizations will become increasingly important
- Consider the emerging e-science paradigm...
 - Global science
 - For example, astrophysics, astronomy, earth sciences, climate modeling, etc.
 - Global shared resources
 - Large Hadron Collider, radio telescopes, polar research stations, computational resources, etc.

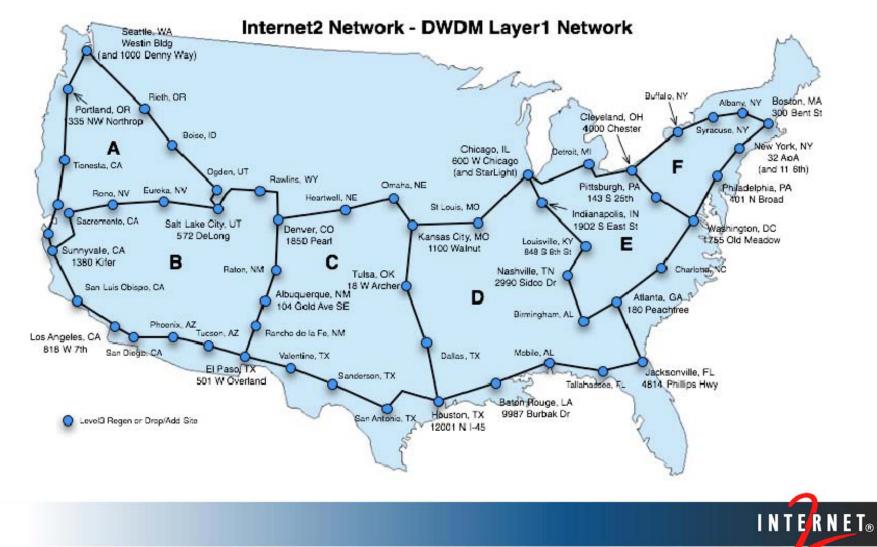
INTERNET®

- Global collaborating science teams
 - E-VLBI, HEP, Genomic Research, etc
- These "affinity groups" combine resources and people into a globally distributed virtual collaborating organizations to pursue a common discipline or objective.

The New Internet2 Network

- Agreement with Qwest for the current Abilene Network ends in October of 2007
- The new Intenet2 network must be capable of supporting e-science applications
- Strategic Objectives
 - Ensure community control of the underlying (optical) network
 infrastructure
 - Leverage the capabilities of a global telecommunications leader
 Providing carrier class reliability and expanded breadth of
 - services, along with a broad set of partnership options
 - Capitalize on the latest technological advancements in networking
 - Create an asset that benefits the entire community researchers, universities, regional optical networks, industry, government, K-12, and the international community

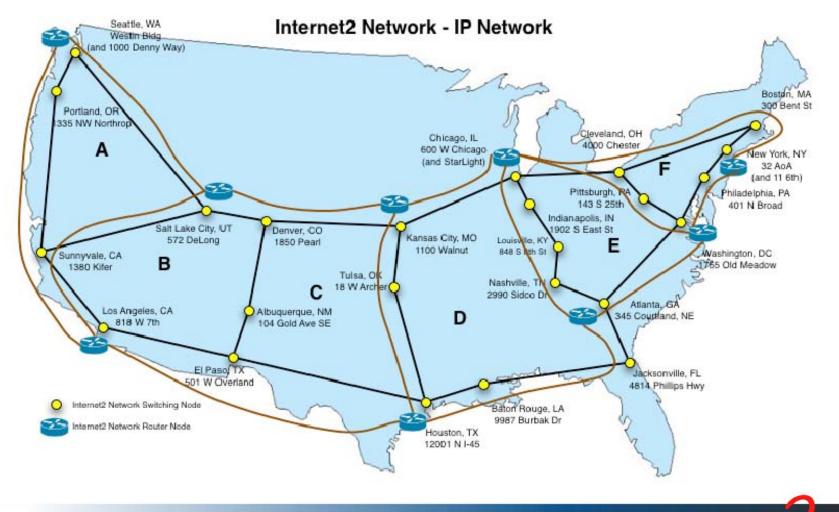
Architecture Goals


- Develop an innovative optical system on a national footprint to serve the broad research and education community
- Develop a hybrid network capable of providing pointto-point lightpath services together with an IP network
- Community should have complete control of the layer 1 optical system including provisioning and switching of wavelengths
- Internet2 should not have to concentrate on reliability and sparing
 - The community focus should be on networking and research, not on managing devices like amplifiers

Architecture Goals

- A dynamic system of deterministic lightpath capabilities using standardized advanced SONET protocols (GFP, VCAT, LCAS)
- The system should be capable of supporting network research in wide variety ways
- Minimal Conditions of Use (CoU), allowing full participation from the entire community in providing new services and capabilities
- Platform support for highly experimental projects to production services

DWDM Topology

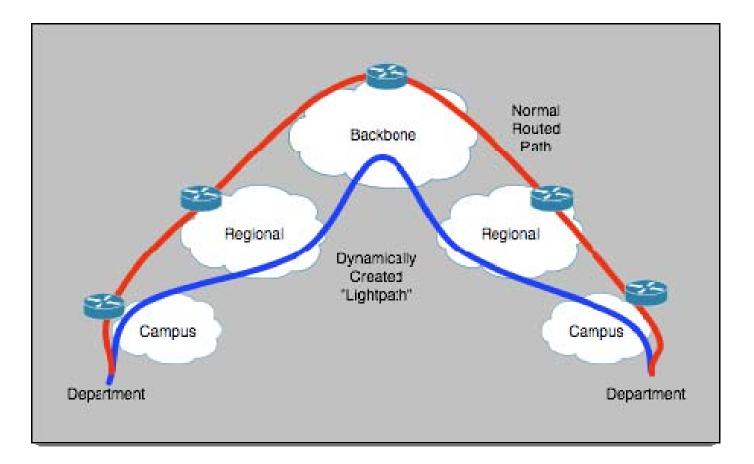


Rick Summerhill

Internet2 ESnet Partnership

- Internet2 and ESnet have formed a partnership to build their respective networks on this DWDM footprint
- ESnet hybrid network
 - An IP network connecting the labs
 - An lower layer network for deterministic services SDN
- Internet2 hybrid network
 - An IP network similar to the existing Abilene network
 - A layer 1 dynamically provisioned network providing deterministic services
- Static and Dynamic services will be available to other partners

Internet2 Optical and IP Network


Rick Summerhill

The New Internet2 Network - What's Different?

- Hybrid IP and Optical System utilizing Level3 fiber platform; equipment and fiber dedicated to Internet2, sparing and equipment maintenance by Level3, including an SLA for wave system
- Initially provisioned with ten times the capacity scalable to as many waves as needed, and to larger bandwidths per wave
- Dynamic provisioning of circuits and waves across the network within seconds
- Connections and Peerings through IP and circuits (lightpaths)!
 - The ability to create circuits between between researchers and facilities such as international radio telescopes and particle accelerators

National Architecture (New)

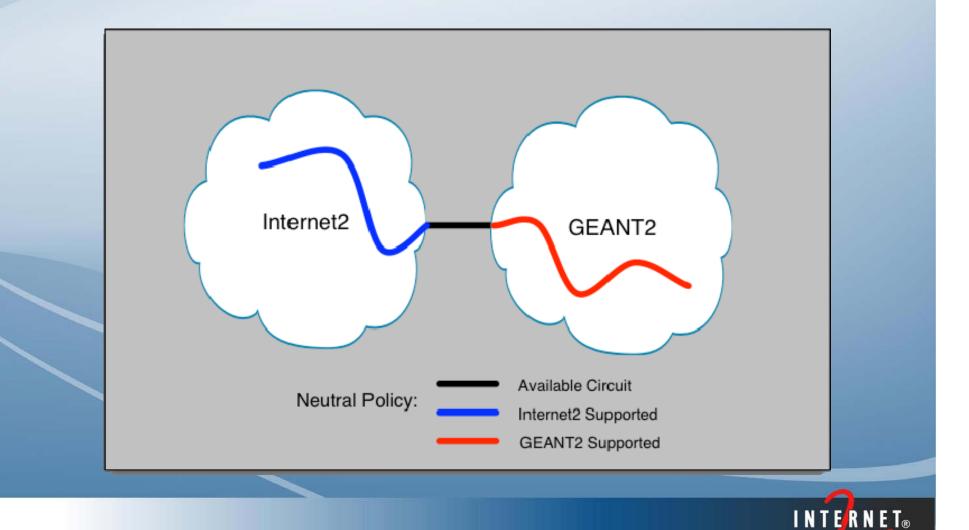


Peerings with the Internet2 Network

- Most open exchange points now have both layer 2 and layer 1 functionality
 - Layer 2 to support IP peerings
 - Layer 1 to support P2P "peerings"
 - And Example is MAN LAN
- Internet2 prefers peerings that connect through these types of open exchanges
- The new Internet2 network design supports IP peerings and layer
 1 peerings (connections) through the optical nodes
 - Currently there are 4 NYC Europe circuits for hybrid peerings
 - There is 1 NYC Europe circuit for IP peering
- Currently examining the layer 1 analogy to Abilene as an International Transit Network (ITN)

Example Projects on Internet2 Network

- Phoebus TCP data flows
 - File transfers over long distance segments not requiring congestion control



Service Trial

- Service trial with GEANT2 on provisioning of 1 GigE circuits across Internet2 and GEANT2
 - Canarie, ESnet, GEANT2, Internet2 developing common request schema for inter-domain circuits
 - Applications identified
 - Participation by RONs and campuses in the trial
 - MAGPI and LONI RONS participating
 - Trial involves setup of long term circuits as well as experimenting with dynamic setup across administrative domains
 - Monitoring and Management
 - The following diagram illustrates the ideas

Internet2/GEANT2 Service Trial

