

Polish EU Grid Projects

Marian Bubak

Institute of Computer Science AGH and ACC CYFRONET AGH

bubak@agh.edu.pl

Kraków, ICFA Workshop, October 09, 2006

- 1. CrossGrid
- 2. Overview of FP6 Projects
 - K-WfGrid
 - EGEE, EGEE II
 - CoreGrid
 - Ambient Network
 - ViroLab
 - (int.eu.grid, GREDIA)
- 3. Projects at ICM and PSNC
- 4. Summary

CrossGrid www.crossgrid.org

Development of Grid Environment for Interactive Applications

- New category of Grid-enabled applications:
 - compute- and data-intensive,
 - distributed,
 - near-real-time response (person in a loop)
- New programming tools
- Grid more user friendly and efficient
- Interoperability with other Grids
- Implementation of standards

CrossGrid Architecture

http://www.crossgrid.org

- 21 partners
- · 2002-2005
- Coordination • •
 - **CYFRONET**
 - Michał Turała

• Research areas

- CrossGrid Applications
- Grid Tool Environment
- New Grid Services
- International Testbed
- Architecture

Performance Analysis Tool

Grid HLA Management System

HLA interfacing services

- HLA-Speaking Service for managing federates
- RTIExec Service for managing RTIExec (coordination process in RTI)
- Broker for setting up a federation and deciding about migration
- Broker decision services
 - Registry for storing location of HLA-speaking services
 - Infrastructure Monitoring/Benchmarks for checking environment of HLA service
 - Application Monitoring for monitoring performance
- Migration support services
 - Migration Service for performing migration

Enabling Grids for e-Science in Europe

- CE Region Consortium consists of 12 institutes from 7 countries: CESNET, CYFRONET, IISAS, GUP ICM, JSI, KFKI-RMKI, PSNC, MTA-SZTAKI, NIIF, SRCE, UNIINNSBRUCK
- Operate, maintain and support EGEE Grid Infrastructure in CE region
- Provide researchers from a variety of scientific disciplines with computing resources of more than 1000 CPUs and 20 TB disk space
- Virtual Organizations supported in Central European region: HEP, computational chemistry, biomedicine, pharmacology, astrophysics, earth science and regional users (VOCE VO)

Others

AstroPh

EGEE activities in CE ROC

- Coordination of Grid Operations within the region
 - CYFRONET

٠

- Middleware deployment
 - all sites coordinated by CYFRONET
- Regional certification of middleware releases and integration of local additions (OCM-G, glogin)
 - CYFRONET, CESNET, GUP-JKU
- Monitoring and management of operational problems
 PSNC
- User Support
 ICM
- Pre-production service (testing gLite version of middleware)
 - CYFRONET, CESNET
- Running essential grid services
 - CYFRONET, CESNET (VOCE VO), RMKI-KFKI

CORRECT K-WfGrid-Workflow Applications and Knowledge

- Integrating services into coherent application scenarios
- Enabling automatic construction and reuse of workflows with knowledge gathered during operation
- Involving monitoring and knowledge acquisition services in order to provide added value for end users

<u>Technologies</u>: service-oriented Grid architecture, software agents, ontologies, dynamic instrumentation.

K-WfGrid - Partners

- Fraunhofer FIRST Berlin, Germany
- Institute of Computer Science, University of Innsbruck Innsbruck, Austria
- Institute of Informatics of the Slovak Academy of Sciences Bratislava, Slovakia
- ACC CYFRONET AGH Kraków, Poland
- LogicDIS S.A. Athens, Greece
- Softeco Sismat SpA Genova, Italy

www.kwfgrid.net

In CoreGRID – Support for Grid PSE

- High Level Programming Language
 - Interpreted on Grid as a runtime system
 - Routine call equals Grid component execution
 - Dynamic binding with implicit syntax and semantics matching
 - Allows programming of various types of computation directly on Grid

Common Grid Component Model

- Syntax and meaning description of functionality
- Explicit model of parameter-to-output relationship
- Functional and non-functional properties described with ontologies
- Data type system strictly based on XML Schema web standard

CCA / H2O Execution Framework

- Based on well-known CCA component standard
- Support for multi-paradigm computations
- Supports interactive components for user control
- Provides dynamic self-reconfiguration of components during runtime

Programming Grid Applications

- Separates the developer from ever-changing Grid resource layer
- Seamlessly introduces dynamism into newly created applications
- Provides unified access to resources by means of semantically described abstractions
- Supports evolving and well organized library of applications used up-to-date
- Allows easy reuse of already built applications

MOCCA Component Framework

Goals

- Provide easy mechanisms for creation of components on distributed shared resources;
- Provide efficient communication mechanism both for distributed and local components;
- Allow flexible configuration of components and various application scenarios;
- Support native components, i.e. components written in non-Java programming languages and compiled for specific architecture.

Solutions

- Distributed CCA-compliant framework
- Based on H2O metacomputing platform
- Uses RMIX for efficient communication
- Java and Jython scripting interface for assembling applications
- Work in progress to support native components using Babel

MOCCA implementation

- CCA components instantiated as H2O pluglets
- Each user can create own arena where components are deployed
- Thanks to H2O kernel security mechanisms, multiple components may run without interfering

Legacy Software to Grid Services

- Legacy software
 - Validated and optimized code / binaries
 - Follows traditional process based model of computation (language & system dependent)
 - Scientific libraries (e.g. BLAS, LINPACK)
- Service oriented architecture (SOA)
 - Enhanced interoperability
 - Language independent interface (WSDL)
 - Execution within system neutral runtime environment (virtual machine)

- Universal architecture enabling to integrate legacy software into service-oriented architecture
- Novel design enabling efficiency, security, scalability, faulttolerance, versatility
- Current implementation: LGF framework which automates the process of migration of C/C++ codes to GT 3.2
- Further work: WSRF, message level security, optimizations, early process migration

- > IP, 45 partners from all over Europe,
- Started in 2004, it has 3 2-years phases
- The Project aims at an innovative, industrially exploitable new network vision based on the dynamic composition of networks
- It uses the Overlay Networks to provide access to any network, including mobile personal networks, through instant establishment of inter-network agreements
- Key element of A.N. architecture is the Ambient Control Space (ACS) as an environment within which a set of modular control functions can co-exist and cooperate. These control functions include SATO modules (Service Aware Transport Overlays), Network Context management, and others.
- Network Composition is the core approach to achieve the dynamic integration of control functionality the ACS across a heterogeneous set of networks.
- > Integrates 3G networks and uses IMS (IP Multimedia Subsystem)

Ambient Network Abstractions

Abstaction introduced to improve network service Media Session/Flow Service reliability and to derive a Node network structure enabling new SSON SSON SSON Beater Abstraction Endpoint Intermediary routing paradigms. MP MC MP **SSON** – Service Specific Overlav MS MC MP Node **Overlay Network** Virtual Link Flow Endpoint **Bearer** – abstract flow in Service Abstraction – end to postation Flow Network Flow Node Flow Transit **Network Domain Boundary** particular service

MS/MP – Media Server, Media Port (content and processing)

http://www.ambient-networks.org/

ViroLab - Project Objectives

The long term mission of *ViroLab* is to provide researchers and medical doctors in Europe with a virtual laboratory for infectious diseases.

- 1. To develop a VO that provides the "glue" for binding the various components of our virtual laboratory
- 2. To develop a virtual laboratory infrastructure for transparent workflow, data access, experimental execution and collaboration
- 3. To virtualize and enhance state-of-the-art in genotypic resistance interpretation tools and integrate them into the virtual laboratory
- 4. To establish epidemiological validation to correctly and quantitatively predict virological and immunological outcomes and disseminate the results to European stakeholders

ViroLab Users

- Experiment developer
 - Plans a ViroLab experiment using the VLvl development tools
 - Knows both how to script an experiment and the modelled domain
 - May prepare dedicated UI for the experiment user
- Scientist experiment user
 - Uses prepared experiment to gather scientific results
 - The results may be shared through collaboration tools with others
 - The results provenance could be tracked and recorded
 - The results may be stored in ViroLab data store
- User of the ViroLab decision support system
 - Uses dedicated web GUI (only web browser required)
 - The system seamlessly uses some ViroLab applications (BAC, Rule Miner) to provide better support over time

ViroLab Use Cases

Architecture of VL

Access to Computation (Middleware)

Access to Data (Data Virtualization)

ViroLab - Partners

- Universiteit van Amsterdam
- University Medical Centre Utrecht
- High Performance Computing Center Stuttgart
- CYFRONET AGH
- Gridwise Technologies
- Institute de Recerca de la SIDA
- Catholic University Leuven
- University College London
- Catholic University Rome
- Eötvös Loránd University
- Institute of Infectious and Tropical Diseases, University of Brescia
- Virology Education B.V.

GRID projects at ICM (current)

Current European projects (EU IST):

- Centre of Excelence for Multiscale Biomolecular Modelling, Bioinformatics and Applications (2002 – 2005)
 - grid workpackage deployment of grid infrastructure for life sciences
- UNIGRIDS (2004 2006)
 - ICM develops high level services (visualization, database access, access to remote instruments)
 - ICM deploys applications for UNICORE/GS
- EGEE (2004-2006)
 - ICM operates HPC resources
- ATVN (2004-2006)
 - ICM operates HPC resources

New project coordinated by ICM (EU IST call 5):

• Chemomentum

R&D CENTER IN GRIDS

• GRIDLAB

Development of the Grid Application Toolkit and middleware secure and efficient tools for the grid applications tested in the transatlantic testbed

- •GRIDSTART
- CROSSGRID
 cross
- ENACTS

- CoreGrid
- ACGT

GridCoord

- EGEE
- HPC-Europa

InteliGrid

<u>-</u>66

HPC-Europa

abling Grids for

Improvement of the project wotk for the aircraft industry, automotive indystry and construction engineering computing

- CLUSTERIX
- SGIgrid
- VLab
- PROGRESS

Summary

- Large scale numerical simulations
- Computationally demanding data analysis
- Distributed computing and storage
- Remote access to experimental equipments
- A need for integration heterogeneous environments into one application
- Collaborative problem solving
- Virtual organisations

www.cyfronet.krakow.pl