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Stability diagram 

The stability of a coherent mode driven by the impedance 
through Landau damping is estimated through the following 
dispersion integral :
J.Scott Berg, F. Ruggiero, Landau damping with two-dimensional betatron tune spread, 
CERN-SL-96-071-AP

Valid for head-tail modes 
that are : 

 Uncoupled

 weakly perturbed
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The stability of a coherent mode driven by the impedance 
through Landau damping is estimated through the following 
dispersion integral :
J.Scott Berg, F. Ruggiero, Landau damping with two-dimensional betatron tune spread, 
CERN-SL-96-071-AP

 Realistic configurations (lattice imperfections, 
coupling, non-linearities, beam-beam 
interactions) lead to complex expressions of 
the amplitude detuning

 Different mechanisms may affect the 
distributions in a non-trivial way (non-
linearities, noise, collimations)

→ Solve the dispersion 
integral numerically     
(W. Herr, L. Vos, Tune distributions and e ective ff
tune spread from beam-beam interactions and the 
consequences for Landau damping in the LHC, 
LHC-PROJECT-NOTE-316)

Valid for head-tail modes 
that are : 

 Uncoupled

 weakly perturbed
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Stability diagram

Amplitude detuning from an 
analytical formula or from 
tracking with MAD-X (X. 
Buffat, PhD thesis, 2015)
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Beam-beam interactions

 The behaviour of the amplitude detuning when the beams collide with 
an offset is non-trivial and leads to important modification of the Landau 
damping

→ Possible loss of Landau damping when bringing the beams into 
collision or when leveling the luminosity with a transverse offset  (X. Buffat et 
al., Stability diagram of colliding beams in the LHC, Phys. Rev. ST Accel. Beams 17, 111002, Nov 2014)
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Non-Gaussian distributions
Injection Ioct = 6.5 A

26 A

35 A

 The impact on the deformation of the distribution 
can be evaluated in realistic configurations (C. 
Tambasco et al., Impact of incoherent effects on Landau stability 
diagram at the LHC, IPAC17)
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Non-Gaussian distributions
Injection Ioct = 6.5 A

26 A

35 A

 The impact on the deformation of the distribution 
can be evaluated in realistic configurations (C. 
Tambasco et al., Impact of incoherent effects on Landau stability 
diagram at the LHC, IPAC17)

 Effect of cutting the tails can be evaluated (N. 
Biancacci et al,. Effect of tail cut and tail population on octupole 
stability threshold in the HL-LHC, WP2 meeting, 03-10-2016)

→ PySSD is currently used to determine the stability thresholds in all phases of 
the LHC and HL-LHC cycles where the amplitude detuning is not linear (e.g. beam-

beam interactions, coupling) or when the distribution is not Gaussian (e.g. diffusion mechanisms, 
hollow e-lens) 
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Implementation
 Python2.6 and python3 compatible, numpy (tested 1.7.0 and 

above)

 Object oriented

 The sources are available at 
https://github.com/PyCOMPLETE/PySSD/ (sixtrack interface is not 
there yet)

 No license

 No parallelism implemented

 No speed optimisation

 No documentation  (except for the references mentionned)

 Several integrators available, but only the slowest most robust one 
is used (fixed grid rectangular) to avoid numerical issues with badly 
behaving footprints / distributions

https://github.com/PyCOMPLETE/PySSD/
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Needs and future plans

 PySSD is run usually on lxplus (MADnPySSD : 1 
MAD-X HD footprint 8nh + 2 PySSD (horizontal and 
vertical) 2nd each

 Each study consists of tens of MADnPySSD run
→ Current resources (LSF / HTCondor) are 
appropriate to cover the needs

 Include M. Schenk's implementation of longitudinal to 
transverse Landau damping based on the dispersion 
integral derived by A. Maillard

 Efforts on speed improvement would be welcome, but 
not urgent needs
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The circulant matrix model
 Initially developed for VEPP-2M (E. A. 

Perevedenstev and A. A. Valishev, “Simulation of the 
head-tail instability of colliding bunches,” Phys. Rev. ST 
Accel. Beams 4, 024403, 2001)

 One bunch / one beam-beam interaction

 Derive the transverse linearised 
equation of motion for a discretised 
longitudinal distribution, including :

 Linear synchrotron and betatron motion

 First and second order chromaticity

 Dipolar and quadrupolar, single/multibunch 
beam coupling impedance

 Linearised coherent beam-beam forces   
(round, 4D, 6D, arbitrary configurations)

 Perfect transverse feedback, ADT model

 RFQ (M. Schenk)
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 Initially developed for VEPP-2M (E. A. 

Perevedenstev and A. A. Valishev, “Simulation of the 
head-tail instability of colliding bunches,” Phys. Rev. ST 
Accel. Beams 4, 024403, 2001)

 One bunch / one beam-beam interaction

 Derive the transverse linearised 
equation of motion for a discretised 
longitudinal distribution, including :

 Linear synchrotron and betatron motion

 First and second order chromaticity

 Dipolar and quadrupolar, single/multibunch 
beam coupling impedance

 Linearised coherent beam-beam forces   
(round, 4D, 6D, arbitrary configurations)

 Perfect transverse feedback, ADT model

 RFQ (M. Schenk)

x (t ) = MOne turn
t x (0)

= ∑
j

e−2 π iQ j t v j

→ Analyse the stability of the one 
turn matrix with normal mode 
analysis



  19

The circulant matrix model

 The equivalence between the CMM and Vlasov treatement (As in D. 

Amorim et al., DELPHI and Vlasov solvers used at CERN, ABP-CWG 16 Mar. 2017) 
was demonstrated recently by A. Maillard (paper in preparation)

 Intrinsic limitations :
 Transverse Landau damping (the transverse motion has to be linear)

 Multiturn wakes (derivation of a one turn matrix)

 Non-normality of the matrices (multibunch instabilities)

→ Vlasov solvers also have intrinsic limitations, the circulant matrix 
model is often complementary
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Building the one turn matrix
Full system basis : Beam  Bunch  Ring  Slice  Transverse dof⊗ ⊗ ⊗ ⊗

... ...

b1 b2
b3

b1
b2

b3

Action 1Action 2

Action 3

Action 2*N
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Building the one turn matrix
Full system basis : Beam  Bunch  Ring  Slice  Transverse dof⊗ ⊗ ⊗ ⊗

... ...

b1 b2
b3

b1
b2

b3

Action 1Action 2

Action 3

Action 2*N

 The layout of the two beams are 
described by an action sequence

 The bunch of the two beams move 
towards each other in steps

 Starting with the identity expressed in 
the full sytem basis

 At each step the matrix corresponding a 
given action is computed for each 
bunch of the two beams

 The matrices are projected in the full 
system basis, and multiplied to matrix 
obtained at the previous step
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Two examples of matrices 
expressed in the full system basis

Two bunches colliding, 1 slice, 1 ring :
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Two examples of matrices 
expressed in the full system basis

Two bunches colliding, 1 slice, 1 ring :

The effect of synchotron motion is introduced via a 
circulant matrix :

Betatron motion for multiple slices:

Weighting for equipopulated / 
equidistant slices Chromaticity effect depend on the Δp/p 

of a given ring

Circulant matrix dependent 
on Qs :

The effect is identical 
in each ring :

(More details in X. Buffat, PhD thesis, 2015)
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Mode coupling instability of 
colliding beams

 The coupling of beam-beam and head-tail modes leads to strong instabilities

 They are well mitigated by a transverse feedback and/or high chromaticity

→ These mitigations (at least one) are needed in the LHC to bring the beams 
into collision and level the luminosity with a transverse offset (e.g IPs 2 and 8)  

(S. White et al., Transverse mode coupling instability of colliding beams, Phys. Rev. ST 
Accel. Beams 17, 041002, 2014)
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Stability of head-tail modes

 BimBim is powerfull in predicting the stability threshold when combined with 
PySSD

Octupole threshold consistent with PyHT 
octupole scan and measurements at the 
LHC

M. Schenk, et al. } PySSD
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Stability of head-tail modes

 BimBim is powerfull in predicting the stability threshold when combined with 
PySSD

 The flexibility of BimBim allows for a better understanding of the mechanisms 
and benchmark with simplied analytical models, other Vlasov solvers and 
tracking simulations (Sacherer, COMBI, PyHT, multbunch HT, DELPHI, NHT)

Octupole threshold consistent with PyHT 
octupole scan and measurements at the 
LHC

BimBim
PyHT

TheoryAirbag distr., LHC impedance
M. Schenk, et al.

M. Schenk, et al.

} PySSD
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Non-normality
 The dynamics of bunch trains is 

not well described by normal 
mode analysis (several identical 
eigenvalues)

Normal mode analysis
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Non-normality
 The dynamics of bunch trains is 

not well described by normal 
mode analysis (several identical 
eigenvalues)

 Usually adressed by 
considering uniformly  filled 
machines (e.g. DELPHI, NHT)

 Modern analysis tools are 
required to analyse the matrix 
(pseudospectrum)

 The non-normal behavior of 
the beams in the LHC is well 
mitigated by the transverse 
feedback

Normal mode analysis

x (t )=MOne turn
t x (0)
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Usage of BimBim

 BimBim is currently used at CERN to :
 Study single/multibunch instability mechanims involving 

the impedance and beam-beam interactions in the LHC
 Study instability mechanisms in the presence of second 

order chromaticity or an RFQ
 Benchmark between formulas and codes
 Complement other instability models' predixtions with 

different limitations
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Implementation
 Python2.6 and python3 compatible, numpy (tested 1.7.0) and 

scipy (tested 0.12.0b1)

 The sources are available at 
https://svnweb.cern.ch/cern/wsvn/BimBim

 Object oriented, with a strong encapsulation (not strictly needed)

 No license

 No parallel implementation

 No documentation  (except for the references mentionned)

 Memory and speed optimisation by using sparse matrices to build 
the intermediate matrices

 By default a regular eigenvalue solver (numpy.linalg.eig) is used 
since the full one turn map is usually dense
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Needs and future plans

 The perfromance of BimBim is limited by memory to a single train of bunches

 A single run takes from <1s to a week depending on the number of bunches 
and the convergence requirement (number of slices and rings)

 A given mechanism is well covered with tens of runs

 The current resources are appropriate to cover the needs

 Future plans :

 Flat beams collision

 Space charge (A. Oeftiger)

 Linearised dynamical model of the e-cloud ?

 Memory optimised parallel scheme ?

Matrix basis : Beam  Bunch  Ring  Slice  Transverse dof ,  Matrix size, Memory size⊗ ⊗ ⊗ ⊗
LHC nominal :       2 x     2808 x    20  x      40 x                        4 → 107x 107 →1Pb 
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