

TRAIN X. Buffat

- Physics
- Examples
- Implementation
- Needs and future plans

Strong beam

- Optics
- Beam parameters

Weak beam

- Optics
- Beam parameters

Strong beam

- Optics
- Beam parameters

Beam-beam forces

Weak beam

- Disturbed optics
- Disturbed beam parameter

Strong beam

- Optics
- Beam parameters

Beam-beam forces

Strong beam

- Disturbed optics
- Disturbed beam parameter

Strong beam

- Disturbed optics
- Disturbed beam parameter

Beam-beam forces

Beam-beam forces

Strong beam

- Disturbed optics
- Disturbed beam parameter

$$\delta x = \delta x' \beta \cot(\pi Q)$$

$$\delta x = \delta x' \beta \cot(\pi Q)$$

Weak-strong:

$$\delta x = \Delta x_{coh}'(d)\beta \cot(\pi Q)$$

$$\Delta x'(x) = \frac{-2r_0N}{\gamma_r} \frac{1}{x} (1 - e^{\frac{-x^2}{2\sigma^2}}) \approx 4\pi \xi x$$

 The average force felt by the particles in the beam is called the coherent force

$$\Delta x'(x) = \frac{-2r_0N}{\gamma_r} \frac{1}{x} (1 - e^{\frac{-x^2}{2\sigma^2}}) \approx 4\pi \xi x$$

 The average force felt by the particles in the beam is called the coherent force

$$\Delta x'_{coh}(\Delta x) = \int_{-\infty}^{\infty} \Delta x'(\Delta x - X) \rho(X) dX$$

$$\Delta x'(x) = \frac{-2r_0N}{\gamma_r} \frac{1}{x} (1 - e^{\frac{-x^2}{2\sigma^2}}) \approx 4\pi \xi x$$

 The average force felt by the particles in the beam is called the coherent force

$$\Delta x'_{coh}(\Delta x) = \int_{-\infty}^{\infty} \Delta x' (\Delta x - X) \rho(X) dX$$

$$= \frac{-2r_0 N}{Y_r} \frac{1}{\Delta x} (1 - e^{\frac{-\Delta x^2}{4\sigma^2}}) \approx \frac{4\pi \xi}{2} \Delta x^{\frac{5}{2}}$$

$$\Delta x'(x) = \frac{-2r_0 N}{Y_r} \frac{1}{x} (1 - e^{\frac{-x^2}{2\sigma^2}}) \approx 4\pi \xi x$$

$$\delta x = \delta x' \beta \cot(\pi Q)$$

Weak-strong:

$$\delta x = \Delta x_{coh}'(d)\beta \cot(\pi Q)$$

$$\delta x = \delta x' \beta \cot(\pi Q)$$

Weak-strong:

$$\delta x = \Delta x_{coh}'(d)\beta \cot(\pi Q)$$

• Strong-strong :
$$\begin{cases} \delta x_{B1} = \Delta x_{coh}' (d + \delta x_{B1} + \delta x_{B2}) \beta_{B1} \cot(\pi Q_{B1}) \\ \delta x_{B2} = \Delta x_{coh}' (d + \delta x_{B1} + \delta x_{B2}) \beta_{B2} \cot(\pi Q_{B2}) \end{cases}$$

$$\delta x = \delta x' \beta \cot(\pi Q)$$

Weak-strong:

$$\delta x = \Delta x_{coh}'(d)\beta \cot(\pi Q)$$

• Strong-strong :
$$\begin{cases} \delta x_{B1} = \Delta x_{coh}' (d + \delta x_{B1} + \delta x_{B2}) \beta_{B1} \cot(\pi Q_{B1}) \\ \delta x_{B2} = \Delta x_{coh}' (d + \delta x_{B1} + \delta x_{B2}) \beta_{B2} \cot(\pi Q_{B2}) \end{cases}$$

Similar treatment applies to the optical function (e.g. dynamic β effect, flip-flop effect)

$$\delta x = \delta x' \beta \cot(\pi Q)$$

Weak-strong:

$$\delta x = \Delta x_{coh}'(d)\beta \cot(\pi Q)$$

• Strong-strong :
$$\begin{cases} \delta x_{B1} = \Delta x_{coh}' (d + \delta x_{B1} + \delta x_{B2}) \beta_{B1} \cot(\pi Q_{B1}) \\ \delta x_{B2} = \Delta x_{coh}' (d + \delta x_{B1} + \delta x_{B2}) \beta_{B2} \cot(\pi Q_{B2}) \end{cases}$$

- Similar treatment applies to the optical function (e.g. dynamic β effect, flip-flop effect)
 - → Simple formulas become non-linear system of equations (LHC nominal : 2x2808 equations)
 - Iterative methods are needed to evaluate these effects

TRAIN

- Compute 1st and 2nd order maps between beam-beam interactions using MAD-X
 - Requires a thin lens lattice allowing for the installation of the beam-beam elements (not strictly needed but the current implementation does not allow thick lenses)
- Load the descripiton of the bunch configuration (filling scheme, intensities and emittances) and build the corresponding matrices
- Fixed-point iteration from the unperturbed orbit to self-consitent orbits for all bunches of the two beams inluding the effect of the coherent beam-beam kicks
 - → Closed orbit search for each bunch with fixed beam-beam kicks as in MAD-X (inner loop)
 - → Recompute beam-beam kicks with the new orbit (outer loop)
- Compute the optics of all bunches using their closed orbit
 - → This results in self-consistent orbits, the optics function are however not self-consistent
 - E. Keil, Truly Self-Consistent Treatment of the Side Effects with Bunch Trains, CERN/SL/95-075 (AP)
 - H. Grote, Self-Consistent Orbits with Beam-Beam Effects in the LHC, LHC Project Report 404 (2000)

LEP operation with 4b trains

Few long-range interactions lead to offsets at the IP, resulting in an increase of the β* (dynamic β effect) → important luminosity loss

E. Keil, Truly Self-Consistent Treatment of the Side Effects with Bunch Trains, CERN/SL/95-075 (AP) W. Herr, Beam-beam issues in the LHC and relevant experience from the SPS proton antiproton collider and LEP, Proceedings of the Beam-Beam Workshop 2001, Fermilab W. Herr et al., Is LEP beam-beam limited at its highest energy?, Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

LHC crossing schemes

 The PACMAN tune and chromaticity variations due to long-range interactions can be mitigated by alternating the crossing angle plane in the two main experiments

Observations at the LHC

 Displacements of the luminous regions corresponding to expectations are measured in the LHC

 The orbit effects of both long-range and headon beam-beam interactions have an important impact on VdM scans and are measurable during separations (OP) scans

M. Schaumann et al., Beam-beam induced orbit effect at the LHC, Proceedings of the Beam-Beam workshop 2013, CERN

W. Kozaneki, Impact of Beam-Beam Effects on Precision Luminosity Determination at the LHC, presented at the Beam-Beam workshop 2013, CERN

A. Gorzawski et al, Long-Range Beam-Beam Orbit Effects in the LHC - Simulations and Observations From Machine Operation in 2016, Proceedings of IPAC 2017

Observations at the LHC

 Displacements of the luminous regions corresponding to expectations are measured in the LHC

- The orbit effects of both long-range and headon beam-beam interactions have an important impact on VdM scans and are measurable during separations (OP) scans
- Modifications of the orbit of the remaining beam are observed when dumping the other

- M. Schaumann et al., Beam-beam induced orbit effect at the LHC, Proceedings of the Beam-Beam workshop 2013, CERN
- W. Kozaneki, Impact of Beam-Beam Effects on Precision Luminosity Determination at the LHC, presented at the Beam-Beam workshop 2013, CERN
- A. Gorzawski et al, Long-Range Beam-Beam Orbit Effects in the LHC Simulations and Observations From Machine Operation in 2016, Proceedings of IPAC 2017
- T. Baer, Beam-beam effects during the beam dump process, presented at the Beam-Beam workshop 2013, CERN

Summary

- TRAIN is (was) used at CERN to :
 - Evaluate constraints driven by beam-beam interactions, in particular PACMAN effects, in the IR design of the LHC, HL-LHC and FCC-hh
 - Define optimal configurations for VdM scans in the LHC
 - Understand observations in the LEP and the LHC

Implementation

- Main contributors: F. C. Iselin, H. Grote, W. Herr starting~1994, new post-processing developed recently by A. Gorzawski
- The sources are available at https://gitlab.cern.ch/agorzaws/train
- FORTRAN77
- Procedural (single file,12k lines, global variables, goto's, ...)
- No license
- No parallel implementation
- No documentation (except for the references mentionned)

Needs and future plans

- The execution of TRAIN takes few tens of seconds
- A single or a few runs are usually enough to evaluate a given configuration
 - → The present resources (desktops/LSF/HTCondor) are appropriate to cover the needs
- Future plans :
 - Remove LHC specific implementations (number of IR, fixed IR design, number of long-range interactions per IR) → Improved flexibility
 - Implement a re-optimisation of the orbit at the IP (lumiscan) to evaluate luminosity loss in realistic configurations
 - Compute the optics in a self-consistent way
 - Migration to MAD-NG?
- A. Gorzawski and T. Pieloni have been maintaining TRAIN with no official commitment
- A technical student will start this autumn to address the requirements for the HL-LHC
- EPFL is participating in the development towards FCC-hh