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How can we keep the particles on a circular trajectory?

How can we keep the particles on a circular trajectory for 1000s of 
turns?
How can we influence the beam size?

How can we describe the motion of a particle in an alternating 
gradient storage ring?
What parameters are of importance?



Beam dynamics in the transverse plane

Transformation through a system of lattice elements
One can compute the solution of a system of elements, by multiplying the
matrices of each single element:
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In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.
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Usually use only magnetic fields for transverse control

What is the equivalent E field of B = 1 T?
– Ultra-relativistic: 

è To guide the particles we use magnetic fields from electro-
magnets.

Lorentz	Force

Equivalent	electric	 field!!:	



Vertical magnetic field to bend in the horizontal plane

Dipole electro-magnets:

Dipole magnets: the magnetic guide

I Dipole magnets:
I define the ideal orbit
I in a homogeneous field created

by two flat pole shoes, B = µ0nI

h

I Normalise magnetic field to momentum:
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Circular accelerator: Lorentz Force = Centrifugal Force

Useful formula:

Example for the LHC
– p+ @ 7 TeV/c
– 8.3 T 

Beam	rigidity



Length of dipole magnet and field define total bending angle of 
magnet:

Circular accelerator: total bending angle:= 2π

How many dipole magnets do we need in the LHC?
• Dipole length = 15 m
• Field 8.3 T

αρ
ds



Define design trajectory with dipole magnets

Trajectories of particles in beam will deviate from design trajectory

è Focusing
– Particles should feel restoring force when deviating from 

design trajectory horizontally or vertically

Design	trajectory



Requirement: Lorentz force increases as a function of distance from 
design trajectory

E.g. in the horizontal plane

We want a magnetic field that 

è Quadrupole magnet

Gradient of quadrupole Normalized gradient, focusing strength

Quadrupole magnets: the focusing force
Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly increasing Lorentz force, thru a linearly increasing magnetic field:
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I LHC main quadrupole magnets:
g ⇡ 25 . . . 220 T/m

the arrows show the force exerted

on a particle

Focusing strength:
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The	red	arrows	show	the	direction	
of	the	force	on	the	particle

k = g
p/q [m

�2]



Light lenses:

In a synchrotron: the lenses are the quadrupoles

Focal length of quadrupole

1
F
=
1
f1
+
1
f2
−

d
f1 f2

f1 f2
Consider	f1=f,	f2 =	- f		è F	=	f2/d>	0

FODO	Cell:	F	=	Focusing,	0=nothing	(bend,	RF,..),
D	=	Defocusing	

Dipole
Foc.	Quad

Defoc.	Quad



Each LHC arc consists of 
23 FODO cells



Length = 3.2 m
Gradient = 223 T/m
Peak field 6.83 T
Total number in LHC: 392



And now a bit of theory to see how we can calculate trajectories 
through dipoles and quadrupoles. 

Taylor series expansion of B field:

Normalize and keep only terms linear in x
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Use different coordinate system: Frenet-Serret rotating frame

The ideal particle stays on “design” trajectory. (x=0, y=0)
And: x,y << ρ

The design particle has momentum p0 = m0γv.

…. relative momentum offset of a particle

The equation of motion in radial coordinates
Let’s consider a local segment of one particle’s trajectory:

the radial acceleration is a
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Replace time ‘t’ free parameter by path length ‘s’:

And Fx is the Lorentz force the particle feels in the magnet…
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All we have to do now is to insert Fx of e.g. a quadrupole magnet

after a bit of maths: the equations of motion

Quadrupole field	changes	sign	between	x	and	y
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Equation of motion in horizontal plane*:

Solution can be found with ansatz

Insert ansatz in equation  è

For K > 0: focusing

*: for completeness: take focusing of dipole field into account

Equation	of	the	harmonic	 oscillator	
with	spring	constant	K

K := 1
⇢2 + k



a1 and a2 through boundary conditions: 

Horizontal focusing quadrupole, K > 0:

Use matrix formalism: TRANSFER MATRIX



Solution of equation of motion with K < 0:

New ansatz is:

And the transfer matrix



Uncoupled motion in x and y

Focusing quadrupole, K >0:

Defocusing quadrupole, K< 0:

Drift space: length of drift space L

….horizontal	plane
….vertical	plane



Transformation through a system of lattice elements
One can compute the solution of a system of elements, by multiplying the
matrices of each single element:
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In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

...typical values are:
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We had…

Around the accelerator K will not be constant, but will depend on s

Where
Ø restoring force ≠ const, K(s) depends on the position s
Ø K(s+L) = K(s) periodic function, where L is the “lattice period”

General solution of Hill’s equation:

Hill’s	equation
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Solution of Hill’s Equation is a quasi harmonic oscillation (betatron
oscillation): amplitude and phase depend on the position s in the 
ring. 

The beta function is a periodic function determined by the focusing 
properties of the lattice: i.e. quadrupoles

The “phase advance” of the oscillation between the point 0 and 
point s in the lattice. 

integration	constants:	determined	
by	initial	conditions
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Transformation through a system of lattice elements
One can compute the solution of a system of elements, by multiplying the
matrices of each single element:
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In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

...typical values are:
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An example…
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Definition:

Let’s assume for s(0) = s0, ψ(0) = 0. 
Defines φ from x0 and x’0, β0 and α0.

Can	compute	the	single	particle	trajectories	
between	two	locations	if	we	know	α, β at	
these	positions!	
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Whereas the beta functions are several 100 m…

…the trajectories are 
in the order of ~ mm

The number of oscillations
around the ring is 
less than 1 in this example. 

The periodicity of the                                                          
oscillation is not the same                                                           
as the periodicity of the                                                           
magnetic structure



The number of oscillations per turn is called “tune”

The tune is an important parameter for the stability of motion over 
many turns. 
It has to be chosen appropriately, measured and corrected.
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Beam Pickup Monitor

vertical orbit

vertical tune
Bunch peak currents are many Amperes !

Strong signals, used to monitor beam 

position and oscillations

Also source of undesirable effects :

wake fields, heating, instabilities
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Typical numbers, for a single bunch       〈Ib〉 = n e frev

LEP  n   = 4×1011          〈Ib〉 = 0.72 mA     σz = 2 cm      Î = 960 A

LHC  n = 1.15×1011    〈Ib〉 = 0.21 mA  σz = 7.55 cm    Î = 73.2 A

             frev = 11245 kHz,     L = 26658.9 m
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Measure	beam	position	at	
one	location	turn	by	turn

Beam	position	will	change	
with	

With	FFT	get	
frequency	of	
oscillation:	 tune



The general form of the transfer matrices that describe the one 
period cell:

where I is the identity matrix S is the antisymmetric matrix and Ax
is a symmetric matrix containing the Courant-Snyder parameters:

Can calculate the Courant-Snyder parameters at another location:
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Construct quantity Jx from the phase-space coordinates x, x'

We call it action variable.

Now we have a look at how Jx transforms through the accelerator:
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Jx is	an	invariant	of	motion	through	the	beam	line,	accelerator	of	
repeated	e.g.	FODO	cells,…



Jx can be written as:

….the equation of an ellipse in 
the phase-space x, x'
The area of the ellipse is

The area in phase space is 
invariant.
The shape and orientation are 
defined by the Courant-Snyder 
parameters.
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We had…

The mean square value of x at a given location is

assume action and phase uncorrelated, and uniform distribution in 
phase from 0 to 2π

Define emittance of particle distribution; Invariant of motion
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Typically particles in accelerator have Gaussian particle distribution 
in position and angle.



What happens to the emittance if the reference momentum P0
changes?

Can write down transfer matrix for reference momentum change:

The emittance shrinks with acceleration!

With                                  where γ, β are the relativistic parameters

The conserved quantity is

It is called normalized emittance.
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The LHC consists of 8 arcs. Each arc consists of 23(+2) FODO 
cells.
The regular FODO cell has the following characteristics:  

Phase	advance:	90°
Maximum	beta:	180	m

FODO

The	beam	size	changes	
along	the	cell!

Maximum	horizontal	
beam	size	in	the	focusing	
quadrupoles

Maximum	vertical	beam	
size	in	the	defocusing	
quadrupoles



The emittance at LHC injection energy 450 GeV: ε = 7.3 nm
At 7 TeV: ε = 0.5 nm

Normalized emittance: ε* = 3.5 µm
Normalized emittance preserved during acceleration.

And for the beam sizes:
At the location with the maximum beta function (βmax = 180 m):

σ450GeV  = 1.1 mm

σ7TeV = 300 µm

Aperture requirement: a > 10 σ
Vertical plane: 19 mm ~ 16 σ @ 450 GeV

~	38	mm


