CERN Sunnner School 2017 Introduction to Accelerator Physics

Part 10

by
Verena Kain CERN BE-OP

Contents of todayss lecture

Accelerating cavity
It accelerates particles with high

Contents of today's lecture

How can we keep the particles on a circular trajectory?

How can we keep the particles on a circular trajectory for 1000s of turns?
How can we influence the beam size?

How can we describe the motion of a particle in an alternating gradient storage ring?
What parameters are of importance?

Contents of today's lecture

Beam dynamics in the transverse plane

Usually use only magnetic fields for transverse control

$$
\vec{F}=q \cdot(\vec{E}+\vec{v} \times \vec{B}) \quad \text { Lorentz Force }
$$

What is the equivalent E field of $B=1 \mathrm{~T}$?

- Ultra-relativistic: $|\vec{v}| \approx c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{rlrl}
F & =q \cdot 3 \cdot 10^{8} \frac{m}{s} \cdot 1 T & \\
& =q \cdot 3 \cdot 10^{8} \frac{m}{s} \cdot \frac{V s}{m^{2}} & & \text { Equivalent electric field!!!: } \\
& =q \cdot 300 \frac{M V}{m} & & |\vec{E}|=300 \frac{M V}{m}
\end{array}
$$

\rightarrow To guide the particles we use magnetic fields from electromagnets.

Dipole nagunetsa guiding nagnetts

Vertical magnetic field to bend in the horizontal plane
Dipole electro-magnets:

$$
\vec{F}=q \cdot \vec{v} \times \vec{B}
$$

$$
B=\frac{\mu_{0} n I}{h}
$$

Dipole nagunetsa guiding nagnetts

Circular accelerator: Lorentz Force = Centrifugal Force

$$
\begin{array}{ll}
F_{L} & =q v B \\
F_{\text {centr }} & =\frac{m v^{2}}{\rho}
\end{array} \longrightarrow \frac{m v^{2}}{\rho}=q v B
$$

$$
\frac{p}{q}=B \rho \quad B \rho \quad \text { Beam rigidity }
$$

Useful formula: $\quad \frac{1}{\rho[m]} \approx 0.3 \frac{B[T]}{p[G e V / c]}$
Example for the LHC

$$
\text { - p+ @ } 7 \text { TeV/c }
$$

- 8.3 T

$$
\frac{1}{2.53 k m}=0.3 \frac{8.3}{7000}
$$

Define design trajectory (orbit)

Length of dipole magnet and field define total bending angle of magnet:

$$
\alpha=\frac{d s}{\rho} \approx \frac{d l}{\rho}=\frac{B d l}{B \rho}
$$

Circular accelerator: total bending angle: $=2 \pi$

$$
\alpha=2 \pi=\frac{\int B d l}{B \rho}=\frac{\int B d l}{\frac{p}{q}}
$$

How many dipole magnets do we need in the LHC?

- Dipole length $=15 \mathrm{~m}$
- Field 8.3 T

$$
\int B d l \approx N l B=2 \pi \frac{p}{q}
$$

$$
N=\frac{2 \pi 700010^{9} \mathrm{e} \mathrm{~V}}{8.3 T 15 \mathrm{~m} 3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} e}=1232
$$

Focusing is mandlatory for stability

Define design trajectory with dipole magnets

Trajectories of particles in beam will deviate from design trajectory

\rightarrow Focusing

- Particles should feel restoring force when deviating from design trajectory horizontally or vertically

Focusing with Ouadrupole Magneets

Requirement: Lorentz force increases as a function of distance from design trajectory
E.g. in the horizontal plane

$$
F(x)=q \cdot v \cdot B(x)
$$

We want a magnetic field that

$$
B_{y}=g \cdot x \quad B_{x}=g \cdot y
$$

\rightarrow Quadrupole magnet

The red arrows show the direction of the force on the particle

Gradient of quadrupole

$$
g=\frac{2 \mu_{0} n I}{r^{2}}\left[\frac{T}{m}\right]
$$

Normalized gradient, focusing strength

$$
k=\frac{g}{p / q}\left[m^{-2}\right]
$$

Strong focusing

Light lenses:

$$
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

Consider $f_{1}=f, f_{2}=-f \rightarrow F=f^{2} / d>0$

In a synchrotron: the lenses are the quadrupoles

FODO Cell: $F=$ Focusing, $0=$ nothing (bend, RF,..),
D = Defocusing

Focal length of quadrupole $\quad f=\frac{1}{k \cdot l_{Q}}$

The LЛC FODO cell

The பHC nain quadrupole nagnett

Length $=3.2 \mathrm{~m}$
Gradient $=223 \mathrm{~T} / \mathrm{m}$
Peak field 6.83 T
Total number in LHC: 392

LHC quadrupole cross section

Towards the Equation of Motion

And now a bit of theory to see how we can calculate trajectories through dipoles and quadrupoles.

Taylor series expansion of B field:
$B_{y}(x)=B_{y 0}+\frac{\partial B_{y}}{\partial x} x+\frac{1}{2} \frac{\partial^{2} B_{y}}{\partial x^{2}} x^{2}+\frac{1}{3!} \frac{\partial^{3} B_{y}}{\partial x^{3}} x^{3}+\ldots$
Normalize and keep only terms linear in x

$$
\frac{B_{y}(x)}{p / q}=\frac{1}{\rho}+k x+\frac{1}{2} h x^{2}+\frac{1}{3} \nVdash x^{3}+\ldots
$$

$$
\frac{B_{y}(x)}{p / q} \approx \frac{1}{\rho}+k x
$$

Towards Equation of Motion

Use different coordinate system: Frenet-Serret rotating frame

The ideal particle stays on "design" trajectory. ($x=0, y=0$)
And: $x, y \ll \rho$
The design particle has momentum $p_{0}=m_{0 \gamma v}$.
$\delta=\frac{p-p_{0}}{p_{0}}=\frac{\Delta p}{p} \ldots$. relative momentum offset of a particle

Towards Equation of Motion

Replace time ' t ' free parameter by path length ' s ':

$$
\begin{aligned}
& x^{\prime}=\frac{d x}{d s} \\
& \frac{d}{d t}=\frac{d s}{d t} \frac{d}{d s}=\mathrm{v} \cdot \frac{d}{d s} \rightarrow x^{\prime}=\frac{p_{x}}{p_{0}} \\
& m \ddot{x}=F_{x} \rightarrow m x^{\prime \prime}=\frac{F_{x}}{\mathrm{v}^{2}} \rightarrow x^{\prime \prime}=\frac{F_{x}}{\mathrm{v} \cdot p}
\end{aligned}
$$

And F_{x} is the Lorentz force the particle feels in the magnet...

The Equation of Motion

All we have to do now is to insert F_{x} of e.g. a quadrupole magnet

$$
\begin{aligned}
F_{x}=q B_{y} \mathrm{v} & =q \cdot g \cdot x \cdot \mathrm{v} \\
x^{\prime \prime} & =\frac{q \cdot g x \cdot x \cdot \mathrm{v}}{p \cdot \mathrm{v}}
\end{aligned}
$$

after a bit of maths: the equations of motion

$$
\begin{aligned}
& x^{\prime \prime}+k x=0 \\
& y^{\prime \prime}-k y=0
\end{aligned}
$$

Quadrupole field changes sign between x and y

Solution of Equation of Motion

Equation of motion in horizontal plane*:

$$
x^{\prime \prime}+K x=0
$$

Equation of the harmonic oscillator with spring constant K

Solution can be found with ansatz

$$
x(s)=a_{1} \cos (\omega s)+a_{2} \sin (\omega s)
$$

Insert ansatz in equation \rightarrow
For $\mathrm{K}>0$: focusing $\quad \omega=\sqrt{K}$

$$
x(s)=a_{1} \cos (\sqrt{K} s)+a_{2} \sin (\sqrt{K} s)
$$

*: for completeness: $K:=\frac{1}{\rho^{2}}+k$ take focusing of dipole field into account

Solution of Equation of Motion

a_{1} and a_{2} through boundary conditions:

$$
s=0 \rightarrow \begin{cases}x(0)=x_{0}, & a_{1}=x_{0} \\ x^{\prime}(0)=x_{0}^{\prime}, & a_{2}=\frac{x_{0}^{\prime}}{\sqrt{K}}\end{cases}
$$

Horizontal focusing quadrupole, $\mathrm{K}>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cos (\sqrt{K} s)+x_{0}^{\prime} \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
& x^{\prime}(s)=-x_{0} \sqrt{K} \sin (\sqrt{K} s)+x_{0}^{\prime} \cos (\sqrt{K} s)
\end{aligned}
$$

Use matrix formalism: TRANSFER MATRIX $\binom{x}{x^{\prime}}=M_{f o c} \cdot\binom{x_{0}}{x_{0}^{\prime}}$

$$
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
-\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)
\end{array}\right)
$$

Solution of Equation for Defocusing Ouadrupole

Solution of equation of motion with $\mathrm{K}<0$:

$$
x^{\prime \prime}+K x=0
$$

New ansatz is:

$$
x(s)=a_{1} \cosh (\omega s)+a_{2} \sinh (\omega s)
$$

And the transfer matrix

$$
M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K|} s) \\
\sqrt{|K|} \sin (\sqrt{|K|} s) & \cos (\sqrt{|K|} s)
\end{array}\right)
$$

Sunnnary of Transfer Matrices

Uncoupled motion in x and y

$$
\begin{array}{ll}
K=1 / \rho^{2}-k & \text {....horizontal plane } \\
K=k & \text {....vertical plane }
\end{array}
$$

Focusing quadrupole, $\mathrm{K}>0$:

$$
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
-\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)
\end{array}\right)
$$

Defocusing quadrupole, $\mathrm{K}<0$:

$$
M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K|} s) \\
\sqrt{|K|} \sin (\sqrt{|K|} s) & \cos (\sqrt{|K|} s)
\end{array}\right)
$$

Drift space: length of drift space L

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

Transfer matrix of synchrotron

$$
\binom{x}{x^{\prime}}_{s_{1}}=M\binom{x}{x^{\prime}}_{s_{0}} M_{\text {total }}=M_{Q F} \cdot M_{D} \cdot M_{B e n d} \cdot M_{D} \cdot M_{Q D} \cdot \ldots
$$

A FEW IMPORTANT CONGEPTS

The Hilll${ }^{2}$ Equation

We had...

$$
x^{\prime \prime}+K x=0
$$

Around the accelerator K will not be constant, but will depend on s

$$
x^{\prime \prime}(s)+K(s) x(s)=0 \quad \text { Hill's equation }
$$

Where
$>$ restoring force \neq const, $\mathrm{K}(\mathrm{s})$ depends on the position s
$>\mathrm{K}(\mathrm{s}+\mathrm{L})=\mathrm{K}(\mathrm{s})$ periodic function, where L is the "lattice period"

General solution of Hill's equation:

$$
x(s)=\sqrt{2 J_{x} \beta_{x}(s)} \cos (\psi(s)+\phi)
$$

The Beta Function \& Co

Solution of Hill's Equation is a quasi harmonic oscillation (betatron oscillation): amplitude and phase depend on the position s in the ring.

integration constants: determined
by initial conditions
The beta function is a periodic function determined by the focusing properties of the lattice: i.e. quadrupoles

$$
\beta(s+L)=\beta(s)
$$

The "phase advance" of the oscillation between the point 0 and point s in the lattice.

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

The beta functions around the machine

 An example...

Courant-Snyder Paranetersa $\beta(\mathrm{s}), \alpha(\mathrm{s}), ~ y(\mathrm{~s})$

Definition: $\quad \alpha(s)=-\frac{1}{2} \beta^{\prime}(s) \quad \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}$

$$
\begin{aligned}
x(s) & =\sqrt{2 J_{x} \beta_{x}(s)} \cos (\psi(s)+\phi) \\
x^{\prime}(s) & \left.=-\sqrt{\frac{22 x_{x}}{\beta(s)}} \alpha(s) \cos (\psi(s)+\phi)+\sin (\psi(s)+\phi)\right)
\end{aligned}
$$

Let's assume for $s(0)=s_{0}, \psi(0)=0$.
Defines ϕ from x_{0} and $x^{\prime}{ }_{0}, \beta_{0}$ and α_{0}.

$$
\begin{gathered}
\binom{x}{x^{\prime}}_{s_{1}}=M\binom{x}{x^{\prime}}_{s_{0}} \begin{array}{l}
\text { Can compute the single particle trajectories } \\
\text { between two locations if we know } \alpha, \beta \text { at } \\
\text { these positions! }
\end{array} \\
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta}{\beta_{0}}}\left(\cos \psi+\alpha_{0} \sin \psi\right) & \sqrt{\beta \beta_{0}} \sin \psi \\
\frac{\left(\alpha_{0}-\alpha\right) \cos \psi-\left(1+\alpha \alpha_{0}\right) \sin \psi}{\sqrt{\beta \beta_{0}}} & \left.\sqrt{\frac{\beta_{0}}{\beta}}(\cos \psi-\alpha \sin \psi)\right)
\end{array}\right)
\end{gathered}
$$

The trajectory around the ring

Whereas the beta functions are several $100 \mathrm{~m} .$.
...the trajectories are
in the order of $\sim \mathrm{mm}$

The number of oscillations around the ring is less than 1 in this example. -0.0005

The periodicity of the oscillation is not the same as the periodicity of the magnetic structure

The Tune

The number of oscillations per turn is called "tune"

$$
Q=\frac{\psi\left(L_{t u r n}\right)}{2 \pi}=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

The tune is an important parameter for the stability of motion over many turns.
It has to be chosen appropriately, measured and corrected.

Measure beam position at one location turn by turn

Beam position will change with

```
\propto cos(2\piQi)
```


The importance of the Courant-Snyder Parameters: $\beta(s), \alpha(s), \gamma(s)$

The general form of the transfer matrices that describe the one period cell:

$$
M_{x}=I \cos \mu_{x}+S \cdot A_{x} \sin \mu_{x}
$$

where I is the identity matrix S is the antisymmetric matrix and A_{x} is a symmetric matrix containing the Courant-Snyder parameters:

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad A_{x}=\left(\begin{array}{cc}
\gamma_{x} & \alpha_{x} \\
\alpha_{x} & \beta_{x}
\end{array}\right) \quad A_{x}^{-1}=\left(\begin{array}{cc}
\beta_{x} & -\alpha_{x} \\
-\alpha_{x} & \gamma_{x}
\end{array}\right)
$$

Can calculate the Courant-Snyder parameters at another location:

$$
A_{x}\left(s_{1}\right)^{-1}=M_{x}\left(s_{1}, s_{0}\right) A_{x}\left(s_{0}\right)^{-1} M_{x}\left(s_{1}, s_{0}\right)^{\mathrm{T}}
$$

The importance of the Courant-Snyder Parameters: $\beta(s), \propto(s), \gamma(s)$

Construct quantity J_{x} from the phase-space coordinates x, x^{\prime}

$$
J_{x}=\frac{1}{2}\left(\begin{array}{cc}
x & x^{\prime}
\end{array}\right) A_{x}\binom{x}{x^{\prime}}
$$

We call it action variable.

Now we have a look at how J_{x} transforms through the accelerator:

$$
\begin{aligned}
J_{x} \rightarrow & \frac{1}{2}\left(\begin{array}{ll}
x & x^{\prime}
\end{array}\right) M^{T}\left(\left(M^{T}\right)^{-1} A_{x} M^{-1}\right) M\binom{x}{x^{\prime}} \\
& =\frac{1}{2}\left(\begin{array}{ll}
x & x^{\prime}
\end{array}\right) A_{x}\binom{x}{x^{\prime}}=J_{x}
\end{aligned}
$$

J_{x} is an invariant of motion through the beam line, accelerator of repeated e.g. FODO cells,...

The importance off the Courant-Snyder Paraneters:

$$
\beta(s), \propto(s), \gamma(s)
$$

J_{x} can be written as:
phase space
$J_{x}=\frac{1}{2}\left(\gamma_{x} x^{2}+2 \alpha_{x} x x^{\prime}+\beta_{x} x^{2}\right)$
....the equation of an ellipse in the phase-space x, x^{\prime}
The area of the ellipse is

$$
A=2 \cdot \pi \cdot J_{x}
$$

The area in phase space is invariant.

Area $=2 \pi J_{\mathrm{x}}$

The shape and orientation are defined by the Courant-Snyder parameters.

Courant-Snyder Parameters and Particle Distriburtion

We had...

$$
x=\sqrt{2 \beta_{x} J_{x}} \cos \psi_{x}
$$

The mean square value of x at a given location is

$$
\left\langle x^{2}\right\rangle=2 \beta_{x}\left\langle J_{x} \cos ^{2} \psi_{x}\right\rangle=\beta_{x}\left\langle J_{x}\right\rangle=\beta_{x} \epsilon_{x}
$$

assume action and phase uncorrelated, and uniform distribution in phase from 0 to 2π

Define emittance of particle distribution; Invariant of motion

$$
\left\langle J_{x}\right\rangle=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle}:=\epsilon_{x}
$$

Courant-Snyder Paranneters and Particle Distribution

Typically particles in accelerator have Gaussian particle distribution in position and angle.

$$
\rho(\mathscr{X})=\frac{N}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}}
$$

Reference View Hardware

Emittance during Acceleration

What happens to the emittance if the reference momentum P_{0} changes?

Can write down transfer matrix for reference momentum change:

$$
M_{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & P_{0} / P_{1}
\end{array}\right) \quad \rightarrow \quad \epsilon_{x 1}=\frac{P_{0}}{P_{1}} \epsilon_{x 0}
$$

The emittance shrinks with acceleration!

With $\quad P=\beta \gamma m c \quad$ where γ, β are the relativistic parameters
The conserved quantity is $\quad \beta_{1} \gamma_{1} \epsilon_{x 1}=\beta_{0} \gamma_{0} \epsilon_{x 0}$
It is called normalized emittance.

Some numbers...

The LHC consists of 8 arcs. Each arc consists of 23(+2) FODO cells.
The regular FODO cell has the following characteristics:

Phase advance: 90°
Maximum beta: 180 m
§

$$
\sigma=\sqrt{\varepsilon \beta}
$$

The beam size changes along the cell!

Maximum horizontal beam size in the focusing quadrupoles

Maximum vertical beam size in the defocusing quadrupoles

Some numbers...

The emittance at LHC injection energy $450 \mathrm{GeV}: \varepsilon=7.3 \mathrm{~nm}$
At $7 \mathrm{TeV}: \varepsilon=0.5 \mathrm{~nm}$

$$
\varepsilon_{7 T e V}=\varepsilon_{450 G e V} \frac{\gamma_{450 \mathrm{GeV}}}{\gamma_{7 T e V}}
$$

Normalized emittance: $\varepsilon^{*}=3.5 \mu \mathrm{~m}$
Normalized emittance preserved during acceleration.
And for the beam sizes:
At the location with the maximum beta function ($\beta_{\max }=180 \mathrm{~m}$):

$$
\begin{aligned}
& \sigma_{450 \mathrm{GeV}}=1.1 \mathrm{~mm} \\
& \sigma_{7 \mathrm{TeV}}=300 \mu \mathrm{~m}
\end{aligned}
$$

Aperture requirement: a > 10σ
Vertical plane: 19 mm ~ 16σ @ 450 GeV

