INSTRUMENTATION

ETECTOR

HIGHENERGY PHYSICS

isabelle.wingerter@lapp.in2p3.fr Office: 40-4-D32 - tel: 16 4889

1.531

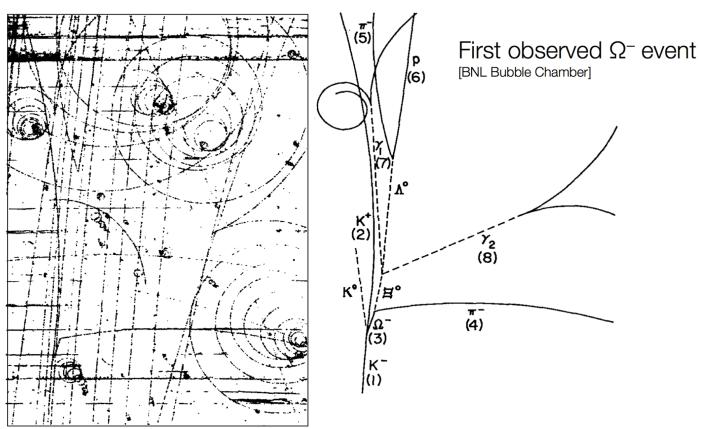
Isabelle Wingerter-Seez (LAPP-CNRS) - CERN Summer Students Program

DETECTOR: INTRODUCTION QUIZZ

What is a detector ?

What does a detector measure ?

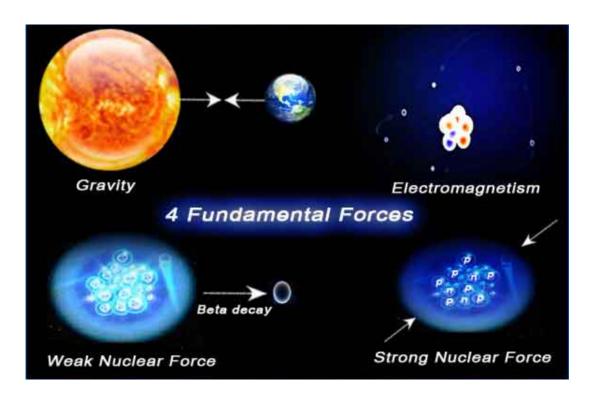
(How is a detector designed ?)


Compare a digital camera with the ATLAS detector

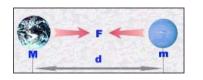
Would you join an experiment where the calorimeter is in front of the tracking system ?

WHAT IS A PARTICLE DETECTOR ?

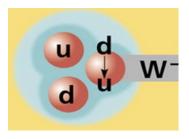
An apparatus able to detect the passage of a particle and/or localise it and/or measure its momentum or energy and/or identify its nature and/or measure its time of arrival


28th June-4th July 2017

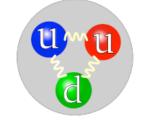
ATLAS 4 µ event: LHC collision event



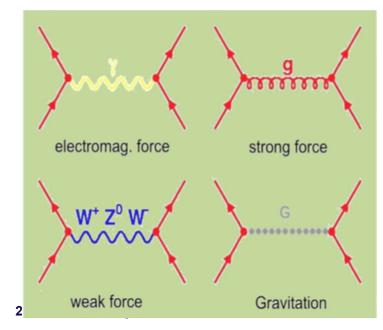
INTERACTIONS



Gravity Graviton ?

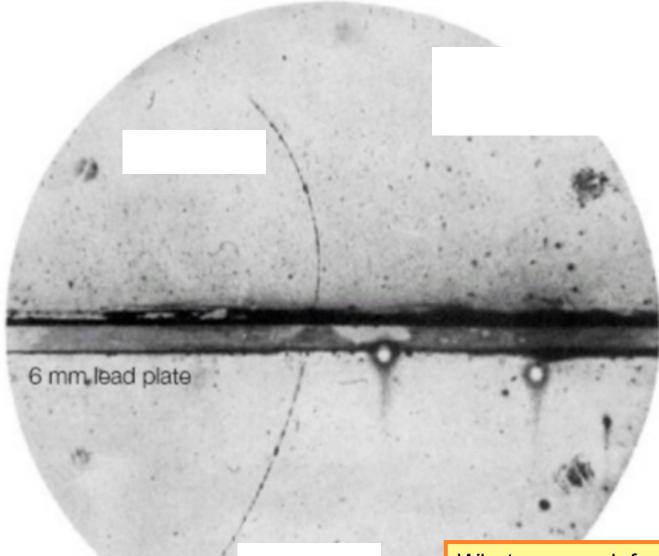


Electromagntism Photon



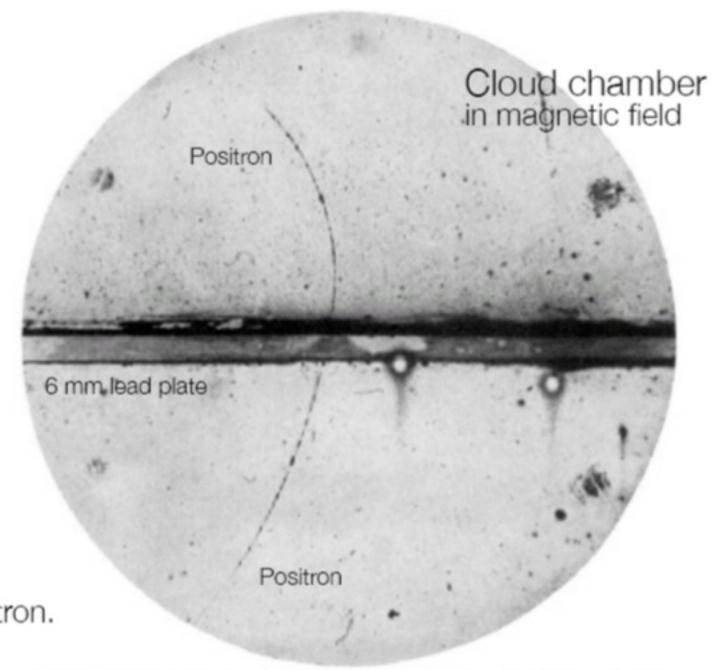
Weak interaction W & Z bosons

Strong interaction Gluons



In the Standard Model (SM) of particle physics, the electromagnetic and the weak forces are unified: electroweak interaction.

6


HOW to DETECT and IDENTIFY a PARTICLE?

ron.

What can you infer from this picture about the setup ? Which way is the particle traversing the photograph ? Why ?

POSITRON DISCOVERY in 1933

Positron discovery in 1933 by Carl Andersen

HOW ARE PARTICLES DETECTED ?

In order to detect a particle it must interact with the material of the detector transfer energy in some recognisable way and leave a *signal*.

Detection of particles happens via their energy loss in the material they traverse.

Charged particles	Ionization, Bremsstrahlung, Cherenkov,	multiple interactions
Photons	Photo/Compton effect, pair production	single interactions
Hadrons	Nuclear interactions	multiple interactions
Neutrinos	Weak interactions	

THE 13 PARTICLES A DETECTOR MUST BE ABLE TO MEASURE AND IDENTIFY

 $\begin{array}{c} e^{\pm} & m_{e} = 0.511 \text{ MeV} \\ \mu^{\pm} & m_{n} = 105.7 \text{ MeV} \sim 200 \text{ me} \\ \gamma & m_{r} = 0, \ Q = 0 \end{array} \end{array} \\ \hline F & m_{r} = 139.6 \text{ MeV} \sim 270 \text{ me} \\ K^{\pm} & m_{r} = 139.6 \text{ MeV} \sim 270 \text{ me} \\ K^{\pm} & m_{r} = 493.7 \text{ MeV} \sim 1000 \text{ me} \\ P^{\pm} & m_{r} = 938.3 \text{ MeV} \sim 2000 \text{ me} \end{array} \\ \hline F & m_{r} = 938.3 \text{ MeV} \sim 2000 \text{ me} \\ \hline F & m_{r} = 938.3 \text{ MeV} \sim 2000 \text{ me} \\ \hline F & m_{r} = 938.3 \text{ MeV} \sim 2000 \text{ me} \\ \hline F & m_{r} = 938.3 \text{ MeV} \sim 2000 \text{ me} \\ \hline F & m_{r} = 938.3 \text{ MeV} \sim 2000 \text{ me} \\ \hline F & m_{r} = 938.6 \text{ MeV} \quad Q = 0 \\ \hline F & m_{r$

The Difference in Mass, Charge, Interection is the key to the Identification

MEASURING PARTICLES

Particles are characterized by

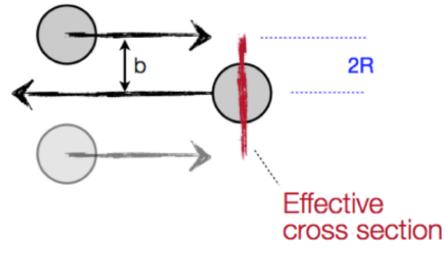
Mass Momentum Energy Charge [+ Spin, Lifetime ...]

Relativistic kinematics:

$$E^{2} = \vec{p}^{2}c^{2} + m^{2}c^{4}$$
$$\beta = \frac{v}{c} \qquad \gamma = \frac{1}{\sqrt{1 - \beta^{2}}}$$
$$E = m\gamma c^{2} = mc^{2} + E_{\rm kin}$$

[Unit: eV/c² or eV] [Unit: eV/c or eV] [Unit: eV] [Unit: e] $eV = 1.6 \cdot 10^{-19} J$ c = 299 792 458 m/s $e = 1.602176487(40) \cdot 10^{-19} C$

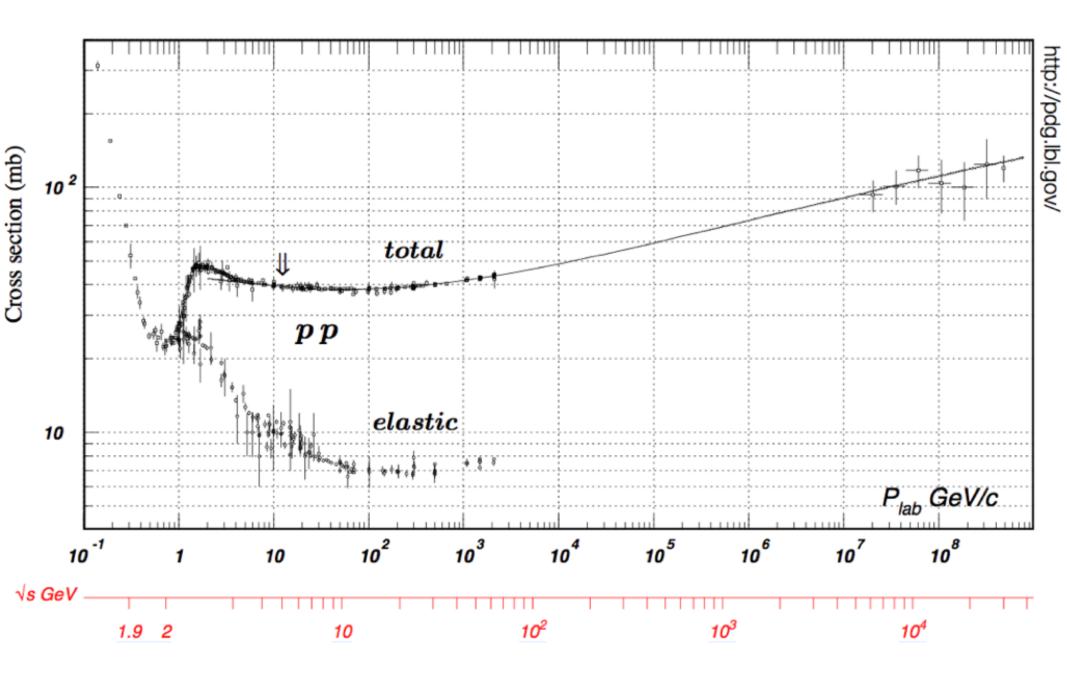
Particle Identification via measurement of e.g. (Ε, p, Q) or (p, β, Q) (p, m, Q) ...

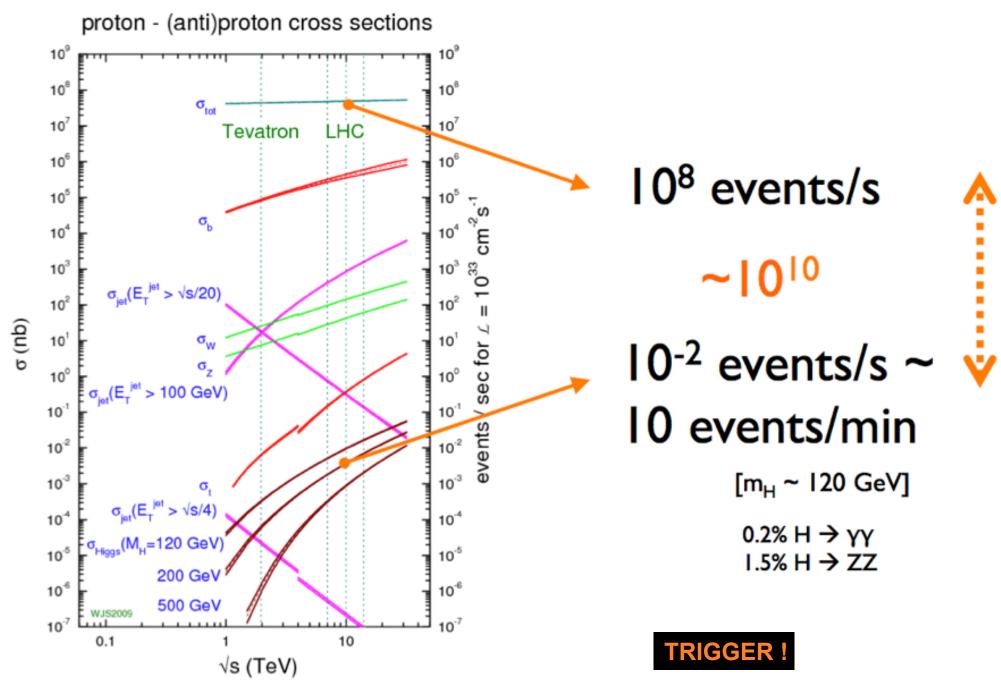

 $\vec{p} = m\gamma \vec{\beta} c$ $\vec{\beta} = \frac{\vec{p}c}{E}$

INTERACTION CROSS-SECTION

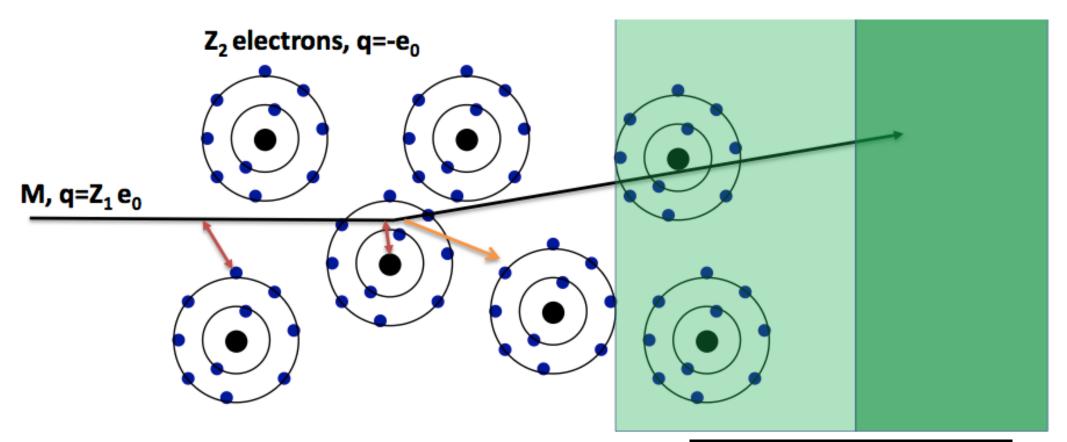
dx

CROSS-SECTION: ORDER OF MAGNITUDE


Standard cross section unit:	[σ] = mb	with	1 mb = 10) ⁻²⁷ cm ²	
natural units: [σ] = GeV ⁻²		with 1 GeV ⁻² = 0.389 mb 1 mb = 2.57 GeV ⁻²			
Estimating the proton-proton cross section	1:	using:	ስር (ስር) ²	= 0.1973 GeV fm = 0.389 GeV ² mb	
				0.0(


Proton radius: R = 0.8 fmStrong interactions happens up to b = 2R

 $\sigma = \pi (2R)^2 = \pi \cdot 1.6^2 \text{ fm}^2$ = $\pi \cdot 1.6^2 \ 10^{-26} \text{ cm}^2$ = $\pi \cdot 1.6^2 \ 10 \text{ mb}$ = 80 mb


PROTON-PROTON SCATTERING CROSS-SECTION

CROSS-SECTIONS AT THE LHC

ELECTROMAGNETIC INTERACTION PARTICLE - MATTER

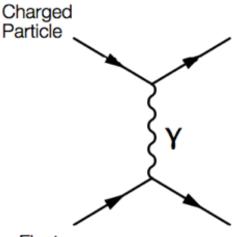
Interaction with the atomic electrons.

The incoming particle loses energy and the atoms are **exited** or **ionised**.

Interaction with the atomic nucleus.

The incoming particle is deflected causing **multiple scattering** of the particle in the material.

During this scattering a **Bremsstrahlung photon** can be emitted

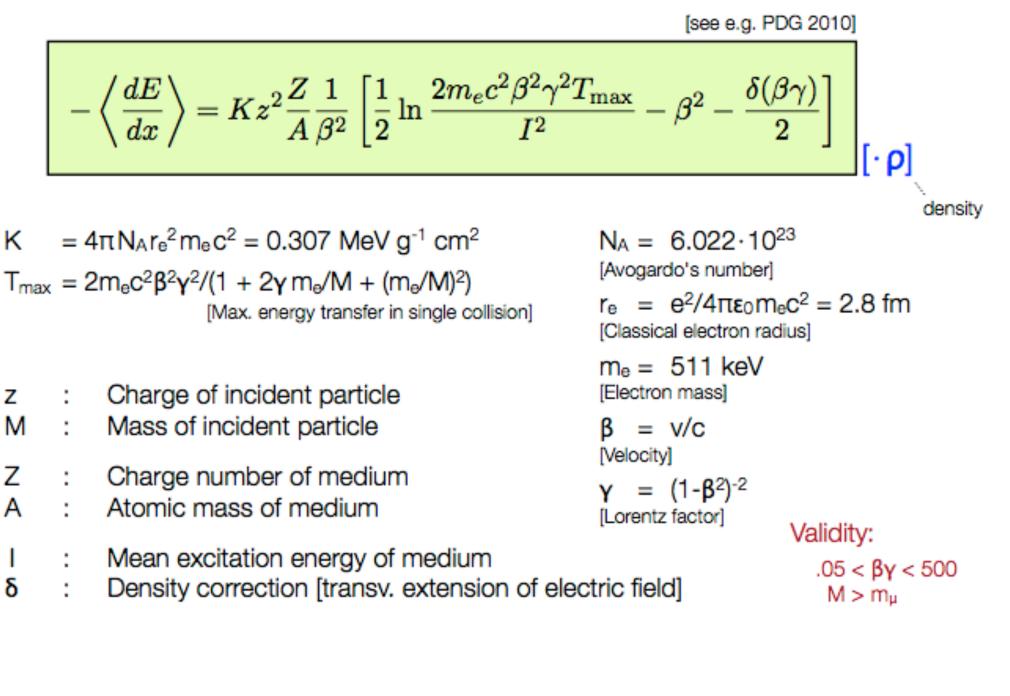

In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as **Cherenkov radiation.** When the particle crosses the boundary between two media, there is a probability of 1% to produce an Xray photon called **Transition radiation.**

ENERGY LOSS BY IONISATION: BETHE-BLOCH FORMULA

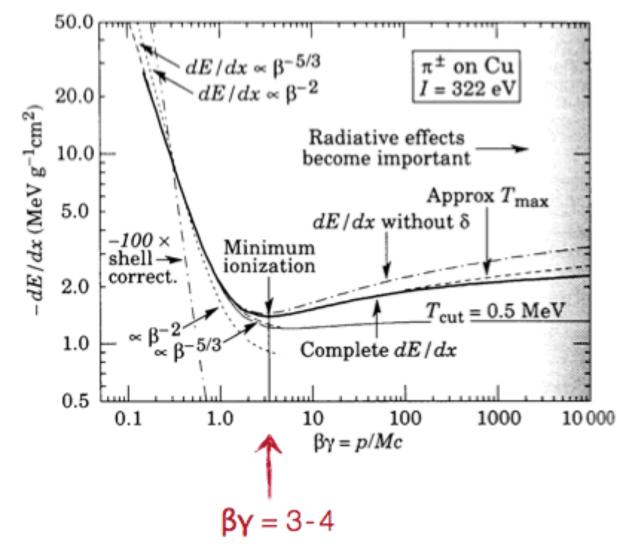
For now assume: $Mc^2 \gg m_e c^2$

i.e. energy loss for heavy charged particles [dE/dx for electrons more difficult ...]

Interaction dominated by elastic collisions with electrons ...



Bethe-Bloch Formula


$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

$$\propto 1/\beta^2 \cdot \ln(\text{const} \cdot \beta^2 \gamma^2)$$

BETHE-BLOCH FORMULA

ENERGY LOSS of PIONS in Cu

Minimum ionizing particles (MIP): $\beta \gamma = 3-4$

dE/dx falls ~ β⁻²; kinematic factor [precise dependence: ~ β^{-5/3}]

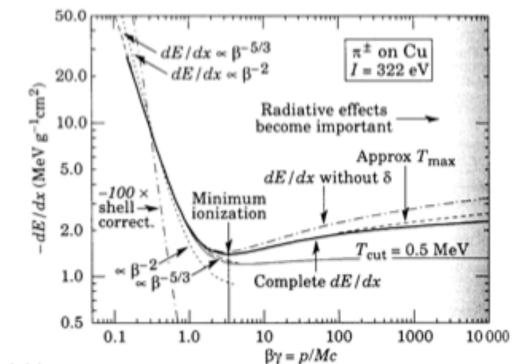
dE/dx rises ~ $\ln (\beta \gamma)^2$; relativistic rise [rel. extension of transversal E-field]

Saturation at large $(\beta \gamma)$ due to density effect (correction δ) [polarization of medium]

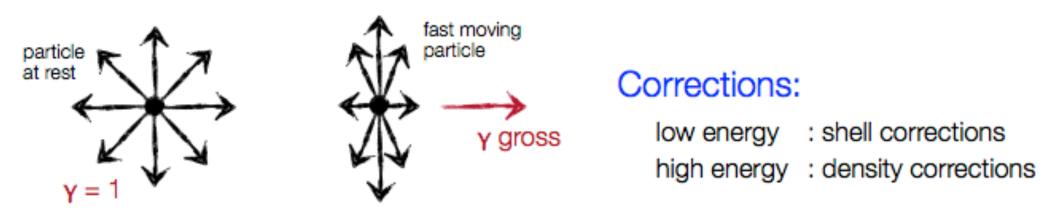
Units: MeV g⁻¹ cm²

MIP looses ~ 13 MeV/cm [density of copper: 8.94 g/cm³]

UNDERSTANDING BETHE-BLOCH


1/β²-dependence:

Remember:


$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} rac{dx}{v}$$

i.e. slower particles feel electric force of atomic electron for longer time ...

Relativistic rise for $\beta \gamma > 4$:

High energy particle: transversal electric field increases due to Lorentz transform; $E_y \rightarrow \gamma E_y$. Thus interaction cross section increases ...

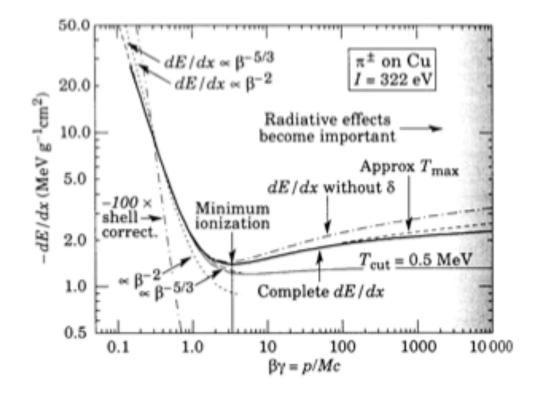
UNDERSTANDING BETHE-BLOCH

Density correction:

Polarization effect ... [density dependent]

→ Shielding of electrical field far from particle path; effectively cuts of the long range contribution ...

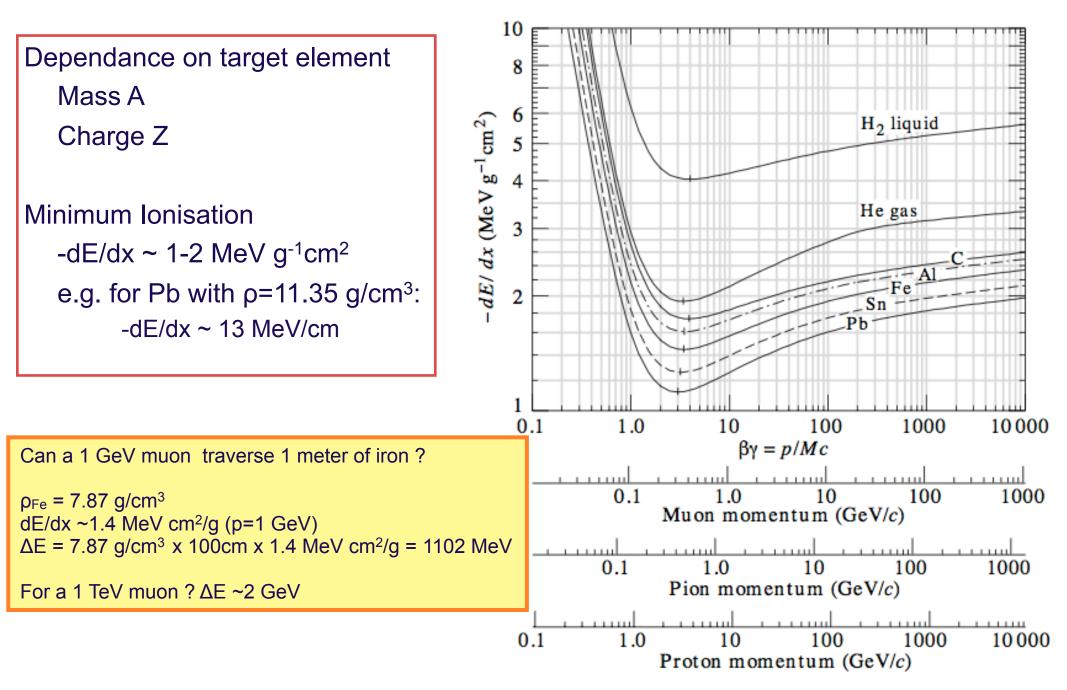
More relevant at high γ ... [Increased range of electric field; larger b_{max}; ...]


For high energies:

 $\delta/2 \rightarrow \ln(\hbar\omega/I) + \ln\beta\gamma - 1/2$

Shell correction:

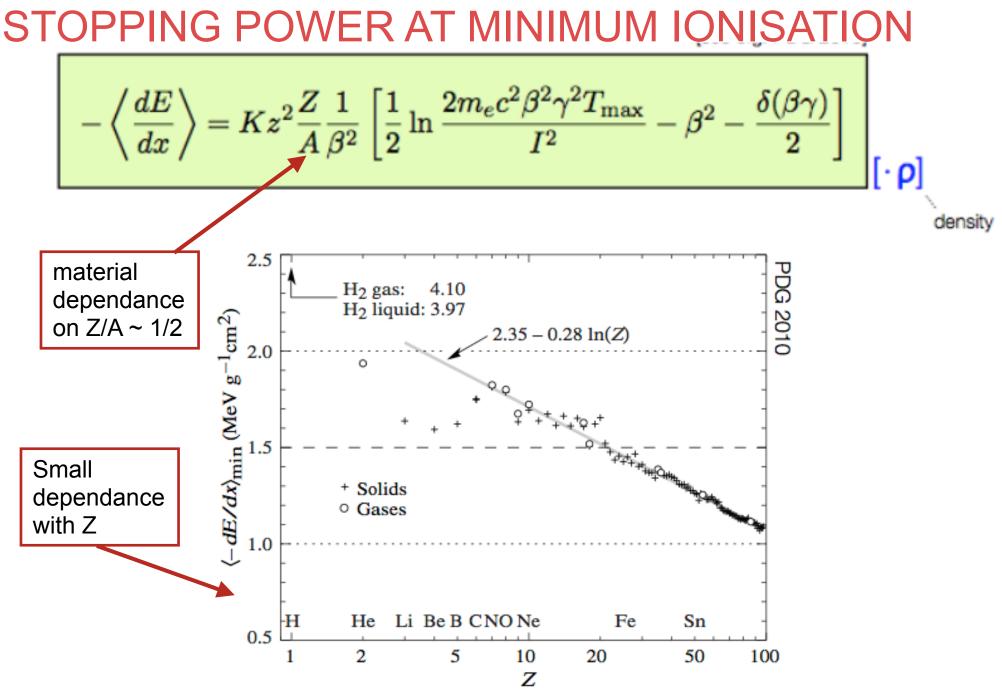
Arises if particle velocity is close to orbital velocity of electrons, i.e. $\beta c \sim v_e$.


Assumption that electron is at rest breaks down ... Capture process is possible ...

Density effect leads to saturation at high energy ...

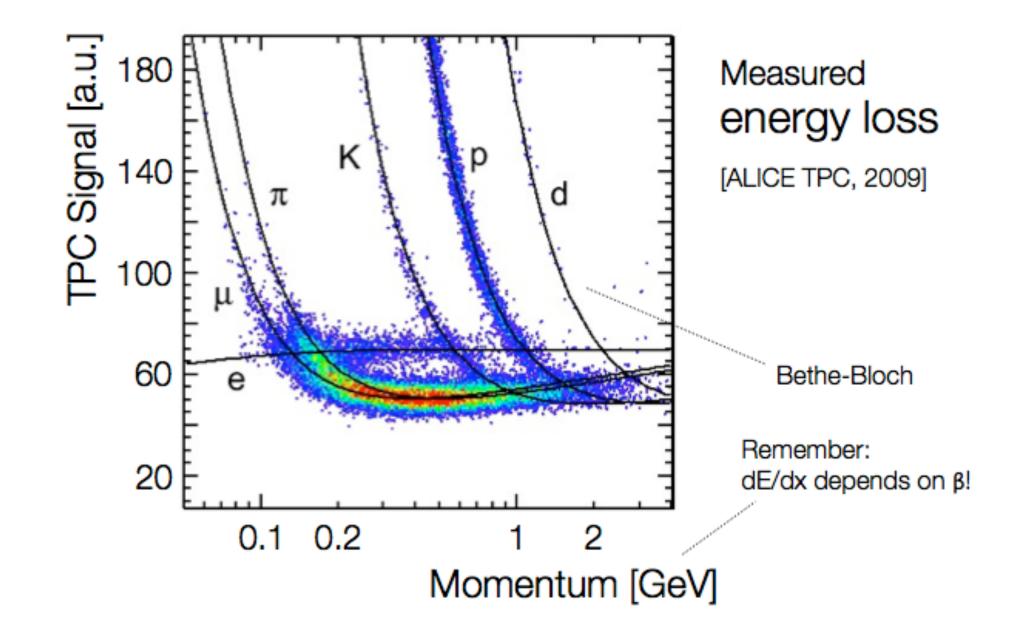
Shell correction are in general small ...

CHARGED PARTICLE ENERGY LOSS in MATERIALS


MATERIAL PROPERTIES

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.


Material	Z	A	$\langle Z/A \rangle$			$dE/dx _{\min}$	^b Radiat	ion length		Liquid	Refractive
					interaction	Mev		X_0	$\{g/cm^3\}$	boiling	index n
					length λ_I	$\left\{ \overline{\mathrm{g/cm}^2} \right\}$	{g/cm	2 {cm}	$(\{g/\ell\}$	-	$((n-1) \times 10^{6})$
				$\{g/cm^2\}$	$\{g/cm^2\}$	(8/ 000)			for gas)	1 atm(K)	for gas)
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \ ^{d}$	(731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	61.28^{d}	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128 [138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		_
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		_
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265^{e}		_
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205 [298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092[67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		_
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233 [283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		_
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		_
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		_
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		_
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		_
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		
U ^{28th} June-4	4th July 201	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		23

Material Z A	$\langle Z/A \rangle$	collision	interaction length λ_I	$\frac{dE/dx _{\min}}{\left\{\frac{MeV}{g/cm^2}\right\}}$		tion length c X_0 x_1^2 {cm}	Density $\{g/cm^3\}$ $(\{g/\ell\}$ for gas)	Liquid boiling point at 1 atm(K)	Refractive index n $((n-1)\times10^6$ for gas)
Air, $(20^{\circ}C, 1 \text{ atm.})$, [STP] H ₂ O CO ₂ gas CO ₂ solid (dry ice)	$\begin{array}{r} 0.49919 \\ 0.55509 \\ 0.49989 \\ 0.49989 \end{array}$	62.0 60.1 62.4 62.4	90.0 83.6 89.7 89.7	(1.815) 1.991 (1.819) 1.787	36.66 36.08 36.2 36.2	36.1 [18310] 23.2	(1.205)[1.2931] 1.00 [1.977] 1.563	78.8 373.15 sublimes	(273) [293] 1.33 [410]
Shielding concrete ^f SiO ₂ (fused quartz) Dimethyl ether, (CH ₃) ₂ O	0.50274 0.49926 0.54778	$67.4 \\ 66.5 \\ 59.4$	99.9 97.4 82.9	1.711 1.699 —	26.7 27.05 38.89	10.7 12.3	2.5 2.20 ^g	248.7	1.458
Methane, CH_4 Ethane, C_2H_6 Propane, C_3H_8 Isobutane, $(CH_3)_2CHCH_3$ Octane, liquid, $CH_3(CH_2)_6CH_3$ Paraffin wax, $CH_3(CH_2)_{n\approx 23}CH_3$	0.62333 0.59861 0.58962 0.58496 0.57778 0.57275	54.8 55.8 56.2 56.4 56.7 56.9	73.4 75.7 76.5 77.0 77.7 78.2	$\begin{array}{c} (2.417) \\ (2.304) \\ (2.262) \\ (2.239) \\ 2.123 \\ 2.087 \end{array}$	46.22 45.47 45.20 45.07 44.86 44.71	$[64850] \\ [34035] \\ \\ [16930] \\ 63.8 \\ 48.1$	$\begin{array}{c} 0.4224[0.717] \\ 0.509(1.356) \\ (1.879) \\ [2.67] \\ 0.703 \\ 0.93 \end{array}$	$ \begin{array}{r} 111.7 \\ h 184.5 \\ 231.1 \\ 261.42 \\ 398.8 \\ \end{array} $	$[444] (1.038)^{h} \\ \\ [1900] \\ 1.397 \\ \\ \\ \\ \\ \\ \\ \\ $
Nylon, type 6 i Polycarbonate (Lexan) j Polyethylene terephthlate (Mylar) k Polyethylene l Polyimide film (Kapton) m	0.54790 0.52697 0.52037 0.57034 0.51264	58.5 59.5 60.2 57.0 60.3	81.5 83.9 85.7 78.4 85.8	1.974 1.886 1.848 2.076 1.820	41.84 41.46 39.95 44.64 40.56	36.7 34.6 28.7 ≈ 47.9 28.6	1.14 1.20 1.39 0.92–0.95 1.42		
Lucite, Plexiglas ^{n} Polystyrene, scintillator ^{o} Polytetrafluoroethylene (Teflon) ^{p} Polyvinyltolulene, scintillator ^{q}	0.53937 0.53768 0.47992 0.54155	59.3 58.5 64.2 58.3	83.0 81.9 93.0 81.5	$1.929 \\ 1.936 \\ 1.671 \\ 1.956$	40.49 43.72 34.84 43.83	≈ 34.4 42.4 15.8 42.5	1.16-1.20 1.032 2.20 1.032		≈1.49 1.581
Aluminum oxide (Al_2O_3) Barium fluoride (BaF_2) Bismuth germanate (BGO) ^{<i>r</i>} Cesium iodide (CsI) Lithium fluoride (LiF) Sodium fluoride (NaF) Sodium iodide (NaI)	0.49038 0.42207 0.42065 0.41569 0.46262 0.47632 0.42697	67.0 92.0 98.2 102 62.2 66.9 94.6	98.9 145 157 167 88.2 98.3 151	1.647 1.303 1.251 1.243 1.614 1.69 1.305	27.94 9.91 7.97 8.39 39.25 29.87 9.49	7.04 2.05 1.12 1.85 14.91 11.68 2.59	3.97 4.89 7.1 4.53 2.632 2.558 3.67		1.761 1.56 2.15 1.80 1.392 1.336 1.775
Silica Aerogel ^s NEMA G10 plate ^t 28th June-4th July 2017	0.50093	66.3 62.6	96.9 90.2	$1.740 \\ 1.87$	27.25 33.0	$136@ ho{=}0.2$ 19.4			1.0+0.21p

Stopping power at minimum ionization for the chemical elements. The straight line is fitted for Z > 6. A simple functional dependence on Z is not to be expected, since <-dE/dx> also depends on other variables.

dE/dX and PARTICLE IDENTIFICATION

dE/dx FLUCTUATIONS

Bethe-Bloch describes mean energy loss; measurement via energy loss ΔE in a material of thickness Δx with

N: number of collisions

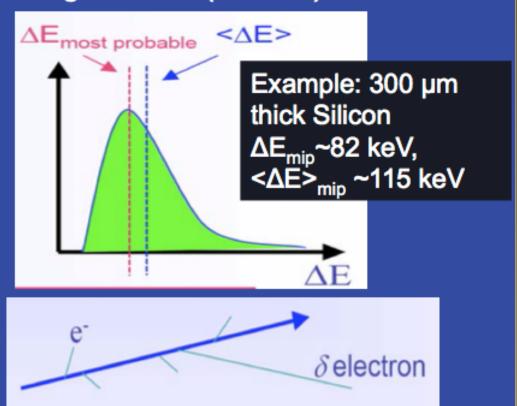
 δE : energy loss in a single collision

lonization loss δE distributed statistically ...

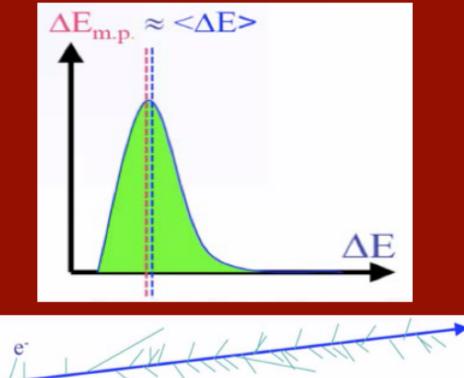
so-called Energy loss 'straggling'

Complicated problem ... Thin absorbers: Landau distribution

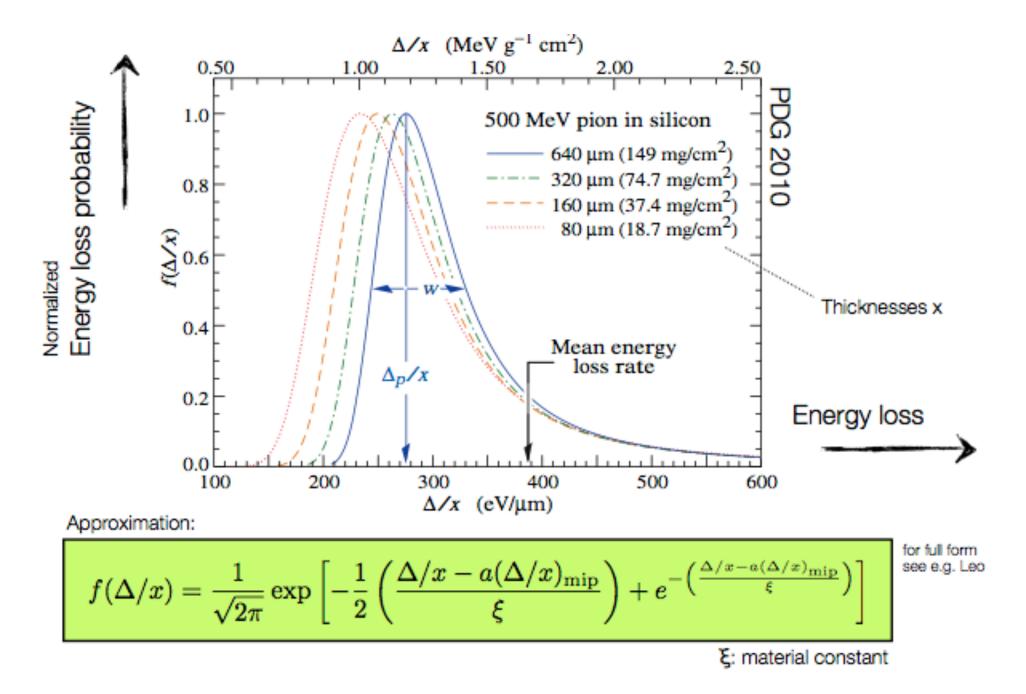
Standard Gauss with mean energy loss E₀


+ tail towards high energies due to δ-electrons

See also Allison & Cobb [Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.]


dE/dx FLUCTUATIONS

In a detector, with limited granularity, one measures ΔE/Δx, and not <dE/dx> i.e. the energy deposit in a thickness of material therefore multi-measurements are needed.

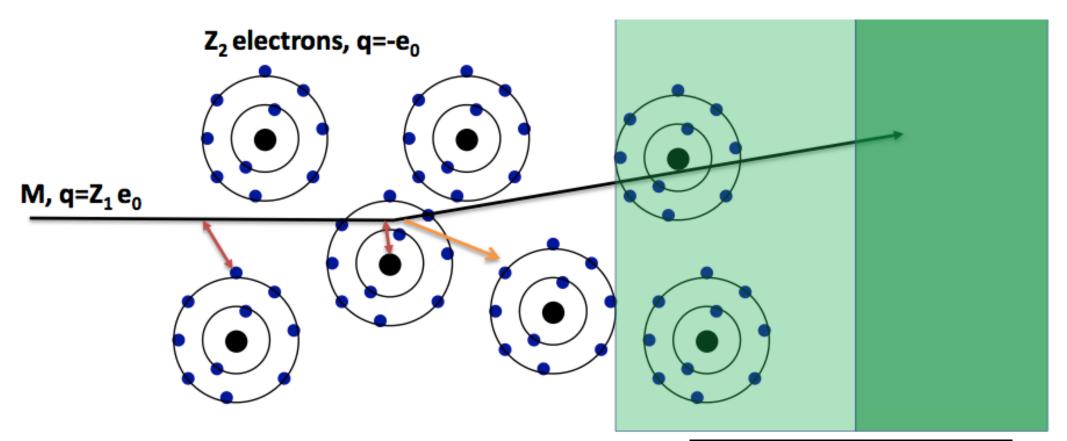

 Thin layers or low density materials: dE/dx has large fluctuations towards high losses (Landau)

 Thick layers and high density materials: the dE/dx is a more Gaussian-like (many collisions

dE/dx FLUCTUATIONS - LANDAU DISTRIBUTION

ENERGY LOSS of ELECTRONS

Bethe-Bloch formula needs modification

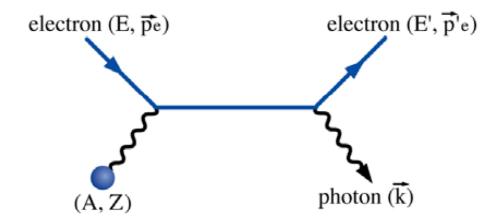

Incident and target electron have same mass me Scattering of identical, undistinguishable particles

$$-\left\langle \frac{dE}{dx} \right\rangle_{\rm el.} = K \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{m_e \beta^2 c^2 \gamma^2 T}{2I^2} + F(\gamma) \right]$$
[T: kinetic energy of electron]

$$W_{\rm max} = \frac{1}{2}$$

Remark: different energy loss for electrons and positrons at low energy as positrons are not identical with electrons; different treatment ...

ELECTROMAGNETIC INTERACTION PARTICLE - MATTER


Interaction with the atomic electrons. The incoming particle loses energy and the atoms are exited or ionised. Interaction with the atomic nucleus.

The incoming particle is deflected causing **multiple scattering** of the particle in the material.

During this scattering a Bremsstrahlung photon can be emitted In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as **Cherenkov radiation.** When the particle crosses the boundary between two media, there is a probability of 1% to produce an Xray photon called **Transition radiation.**

BREMSSTRAHLUNG

Real photon emission in the electromagnetic field of the atomic nucleus

Electric field of the nucleus + of the electrons Z(Z+1)

At large radius, electrons screen the nucleus $ln(183Z^{-1/3})$

 $d\sigma/dk = 4 \alpha Z(Z+1)r_e^2 \ln(183Z^{-1/3})(4/3-4/3y+y^2)/k$

[D.F.]

where y=k/E and
$$r_e = \frac{1}{4\pi\epsilon_0} \cdot \frac{e^2}{m_e c^2} = 2.818 \ 10^{-15} \text{ m}$$
 classical radius of the electron.

For a given E, the average energy lost by radiation, dE, is obtained by integrating over y.

BREMSSTRAHLUNG & RADIATION LENGTH

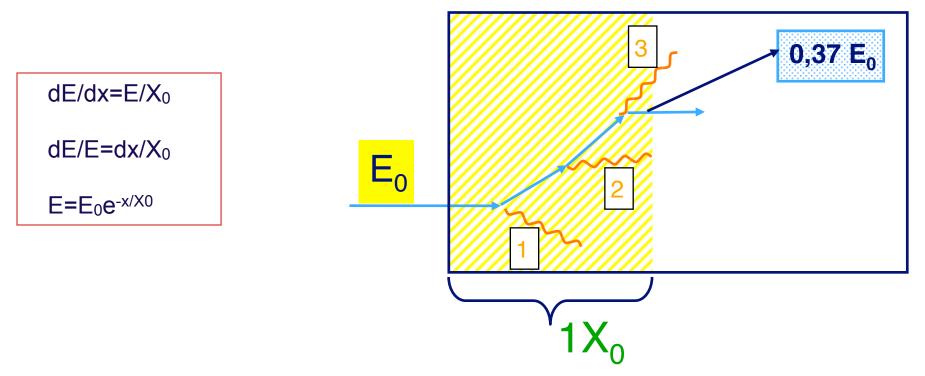
Bremsstrahlung arises if particles are accelerated in Coulomb field of nucleus

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ \ln\frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^2}$$

i.e. energy loss proportional to $1/m^2 \rightarrow \text{main relevance for electrons} \dots$... or ultra-relativistic muons

Consider electrons:

$$\begin{split} \frac{dE}{dx} &= 4\alpha N_A \ \frac{Z^2}{A} r_e^2 \cdot E \ \ln \frac{183}{Z^{\frac{1}{3}}} \\ \frac{dE}{dx} &= \frac{E}{X_0} \qquad \text{with} \quad X_0 = \frac{A}{4\alpha N_A \ Z^2 r_e^2 \ \ln \frac{183}{Z^{\frac{1}{3}}}} \\ \text{[Radiation length in g/cm^2]} \end{split}$$


$$\bullet E = E_0 e^{-x/X_0}$$

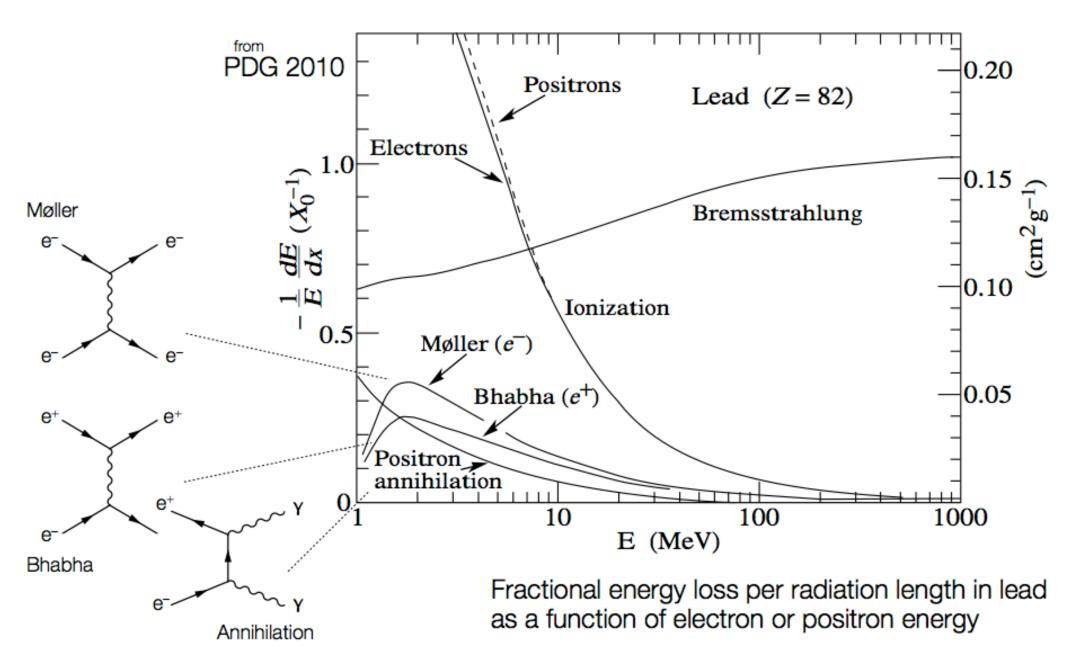
After passage of one X₀ electron has lost all but (1/e)th of its energy [i.e. 63%]

RADIATION LENGTH

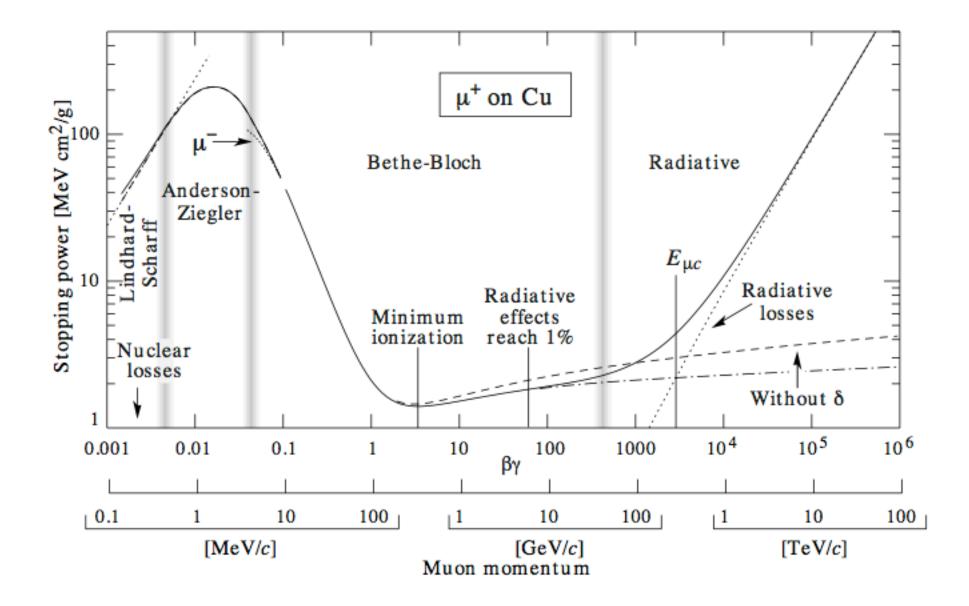
The radiation length is a "universal" distance, very useful to describe electromagnetic showers (electrons & photons)

 X_0 is the distance after which the incident electron has radiated (1-1/e) 63% of its incident energy

	Air	Eau	Al	LAr	Fe	Pb	PbWO ₄	LAr/Pb
Z	-	-	13	18	26	82	Ι	Ι
X ₀ (cm)	30420	36	8,9	14	1,76	0.56	0.89	1.9


28th June-4th July 2017

CRITICAL ENERGY

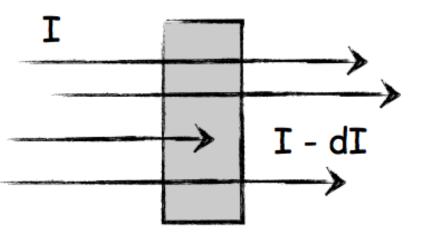

Critical energy:

 $\left(\frac{dE}{dx}\right)_{\text{Tot}} = \left(\frac{dE}{dx}\right)_{\text{Ion}} + \left(\frac{dE}{dx}\right)_{\text{F}}$ $\left. \frac{dE}{dx}(E_c) \right|_{\text{Browns}} = \left. \frac{dE}{dx}(E_c) \right|$ 200 Copper $X_0 = 12.86 \text{ g cm}^{-2}$ $E_c = 19.63 \text{ MeV}$ 100 Approximation: $dE/dx \times X_0$ (MeV) 70 Etal bronstra $E_c^{\rm Gas} = \frac{710 \text{ MeV}}{Z + 0.92}$ Rossi: 50 Ionization per X_0 Brens 40 = electron energy 30 $E_c^{\rm Sol/Liq} = \frac{610 \text{ MeV}}{Z+1.24}$ Ionization 20 Brems = ionization Example Copper: 10 2 5 20 100 200 10 50 $E_c \approx 610/30 \text{ MeV} \approx 20 \text{ MeV}$ Electron energy (MeV)

TOTAL ENERGY LOSS FOR ELECTRONS

μ^{+} in COPPER

INTERACTION OF PHOTONS WITH MATTER

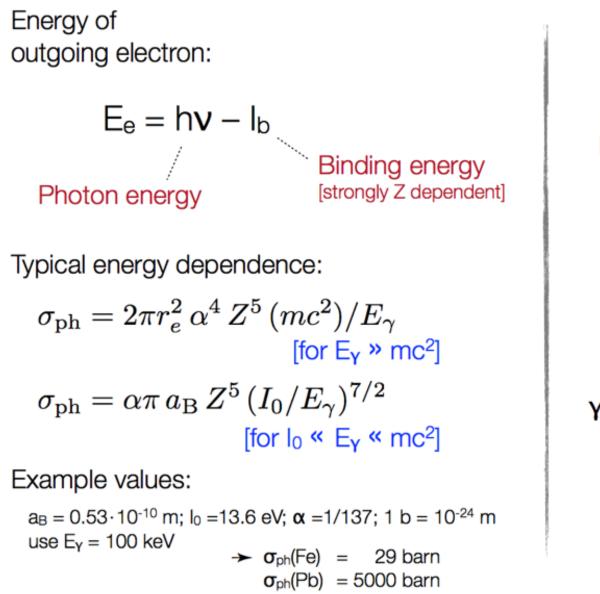

Characteristic for interactions of photons with matter:

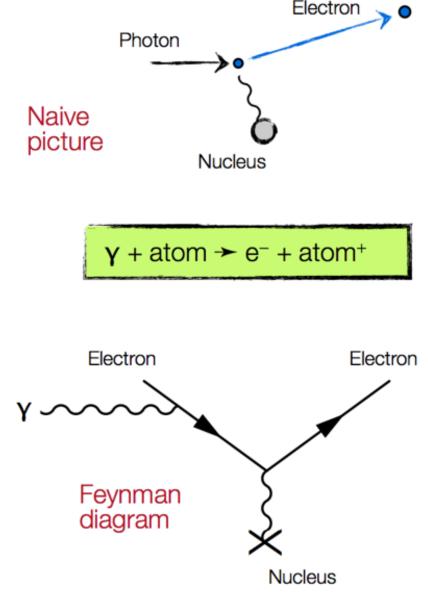
A single interaction removes photon from beam !

Possible Interactions

Photoelectric Effect Compton Scattering Pair Production

Rayleigh Scattering ($\gamma A \rightarrow \gamma A$; A = atom; coherent) Thomson Scattering ($\gamma e \rightarrow \gamma e$; elastic scattering) Photo Nuclear Absorption ($\gamma K \rightarrow pK/nK$) Nuclear Resonance Scattering ($\gamma K \rightarrow K^* \rightarrow \gamma K$) Delbruck Scattering ($\gamma K \rightarrow \gamma K$) Hadron Pair production ($\gamma K \rightarrow h^+h^-K$)


 $dI = -\mu I \, dx$ [μ : absorption coefficient] depends on E, Z, ρ


Beer-Lambert law:

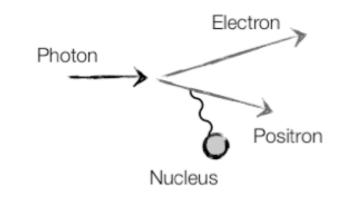
 $I(x) = I_0 e^{-\mu x}$

with $\lambda = 1/\mu = 1/n\sigma$ [mean free path]

PHOTO-ELECTRIC EFFECT

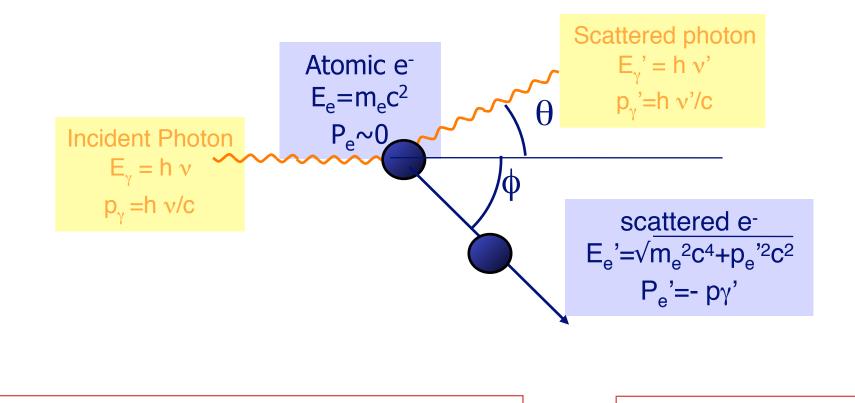
PAIR PRODUCTION

Cross Section: [for $E_Y \gg m_e c^2$] $\sigma_{pair} \approx \frac{7}{9} \underbrace{\left(4 \alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}}\right)}_{A/N_A X_0}$ [X_0: radiation length] [in cm or g/cm²]


Absorption coefficient:

 $\mu = n\sigma$ [with n: particle density]

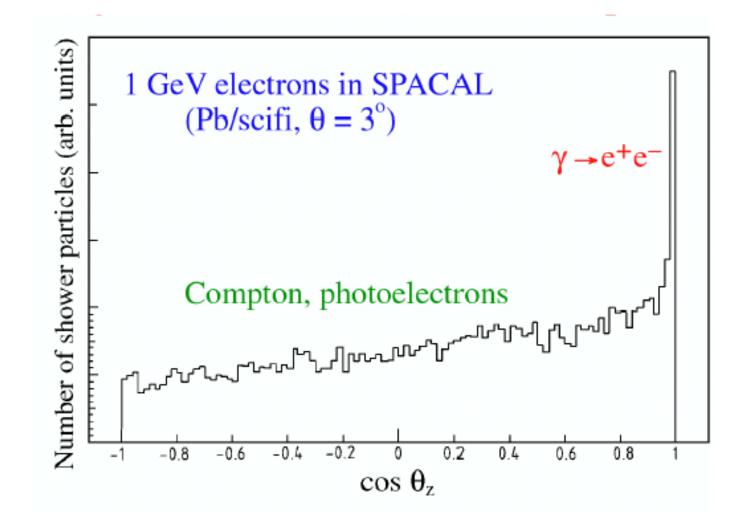
 $\mu = \rho \cdot N_A / A \sigma_{pair}$ $= 7/9 \frac{1}{X_0}$


[where now X₀ is in cm]

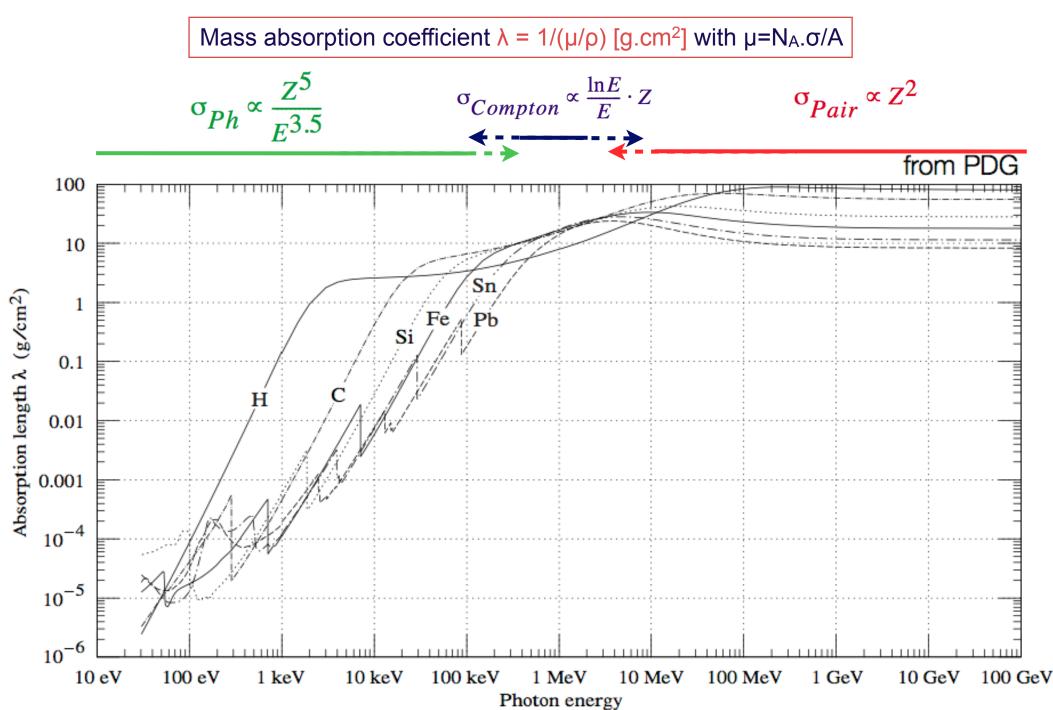
$$I(x) = I_0 e^{-\mu x}$$

	ρ [g/cm ³]	X ₀ [cm]	
H ₂ [fl.]	0.071	865	
С	2.27	18.8	
Fe	7.87	1.76	
Pb	11.35	0.56	
Air	1.2·10 ⁻³	30 · 10³	

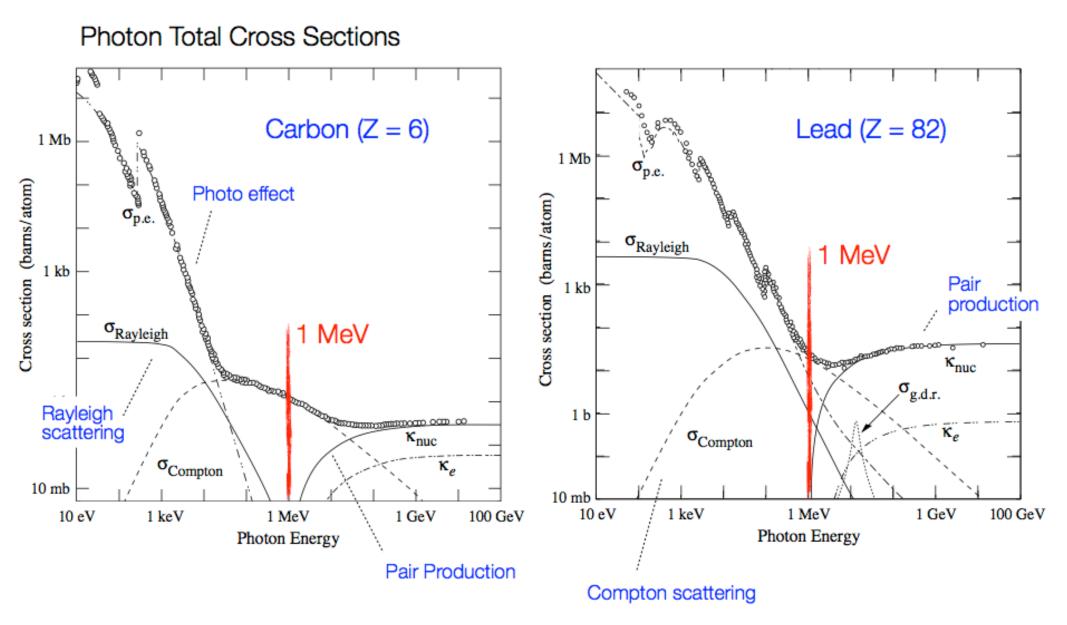
COMPTON SCATTERING



QED cross-section for γ -e scattering


 $\sigma_{compton} \sim Z \cdot In(E_{\gamma})/E_{\gamma}$

Process dominant at E $\gamma \simeq 100$ keV - 5 GeV


ANGULAR DISTRIBUTION

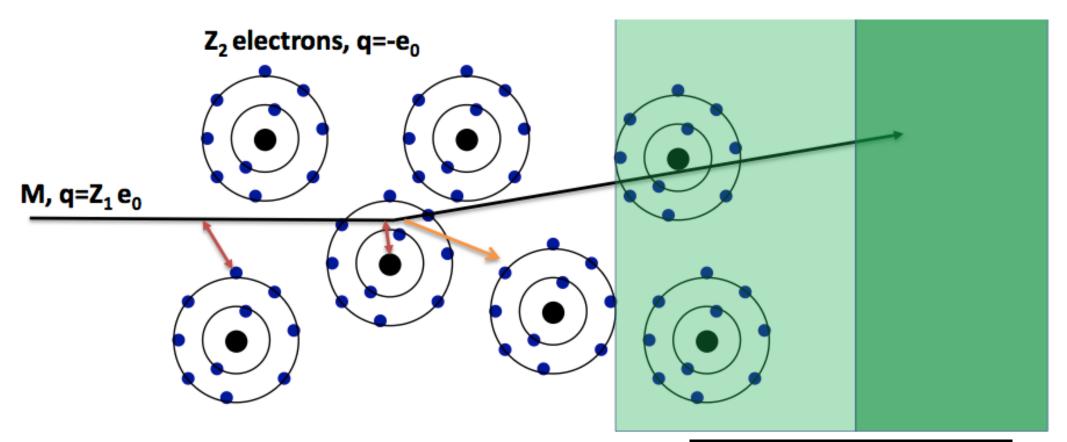

INTERACTION OF PHOTONS WITH MATTER

INTERACTION OF PHOTONS WITH MATTER

MULTIPLE SCATTERING

Scattering of charged particles off the atoms in the medium causes a change of direction

The statistical sum of many such small angle scattering results in a gaussian angular distribution with a width given by

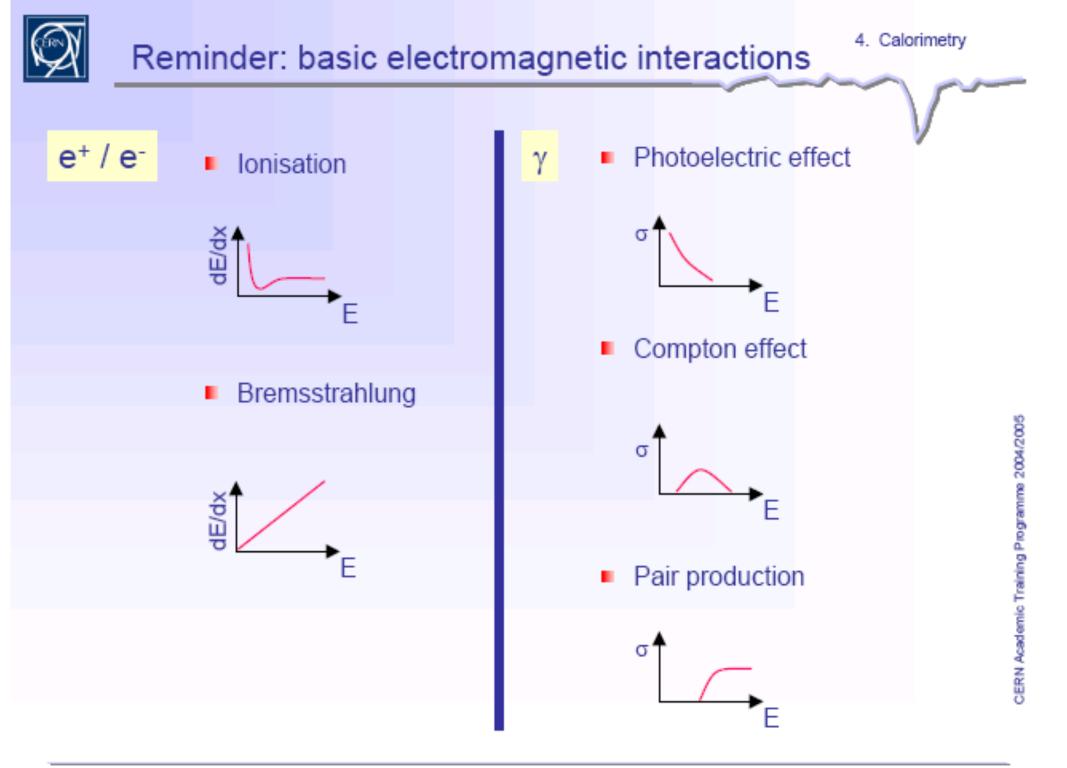

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

Example

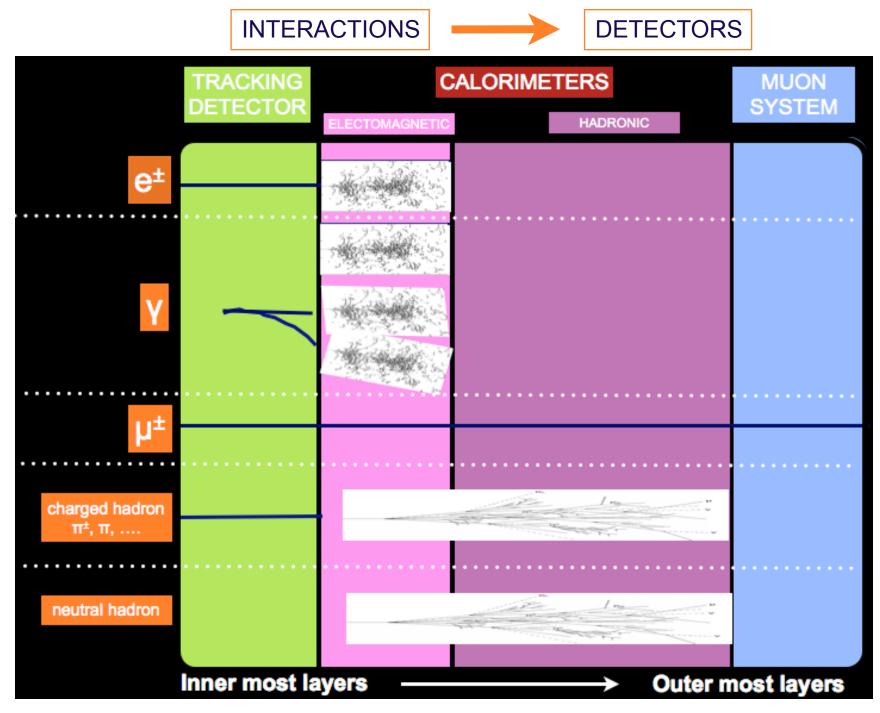
p=1 GeV, x=300 μ m, Si X₀=9.4 cm $\rightarrow \theta_0$ =0.8 mrad

For a distance of 10 cm this corresponds to $80 \mu m$, which is significantly larger than typical resolution of Si-strip detector.

ELECTROMAGNETIC INTERACTION PARTICLE - MATTER


Interaction with the atomic electrons. The incoming particle loses

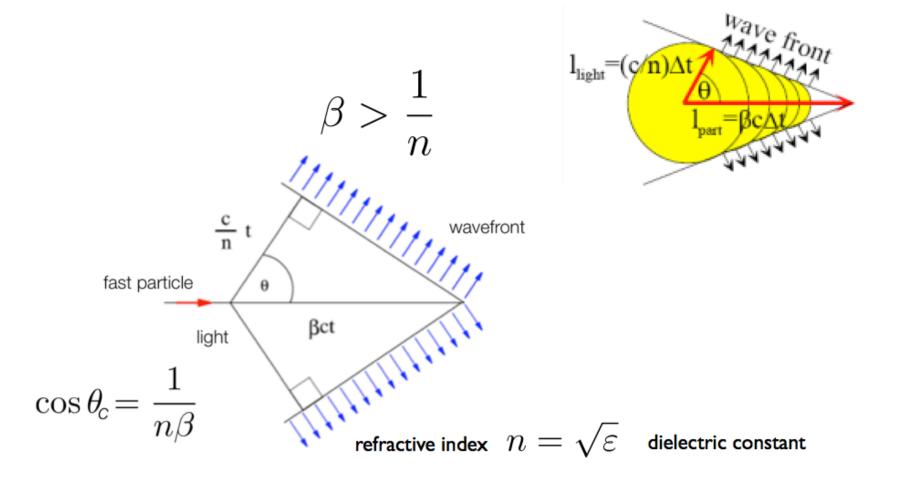
energy and the atoms are **exited** or **ionised**.


Interaction with the atomic nucleus.

The incoming particle is deflected causing **multiple scattering** of the particle in the material.

During this scattering a Bremsstrahlung photon can be emitted In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as **Cherenkov radiation.** When the particle crosses the boundary between two media, there is a probability of 1% to produce an Xray photon called **Transition radiation.**

DETECTOR QUIZZ II : explain this schematic



EXTRA

CERENKOV RADIATION

Particles moving in a medium with **speed larger than speed of light in that medium** loose energy by emitting electromagnetic radiation

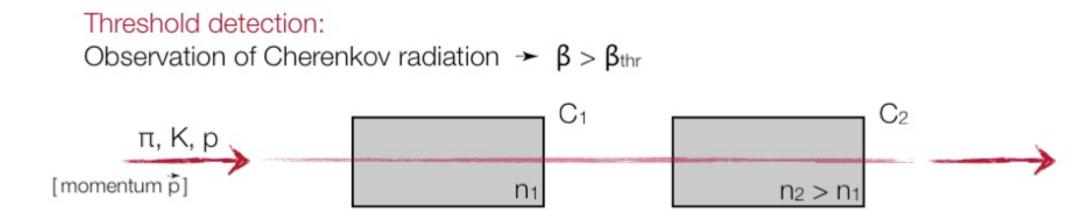
Charged particles polarise the medium generating an electrical dipole varying with time Every point in the trajectory emits a spherical EM wave; waves constructively interfere

CERENKOV RADIATION

Parameters of Typical Radiator

Medium	n	β _{thr}	θ _{max} [β =1]	Nph [eV ⁻¹ cm ⁻¹]
Air	1.000283	0.9997	1.36	0.208
Isobutan	1.00127	0.9987	2.89	0.941
Water	1.33	0.752	41.2	160.8
Quartz	1.46	0.685	46.7	196.4

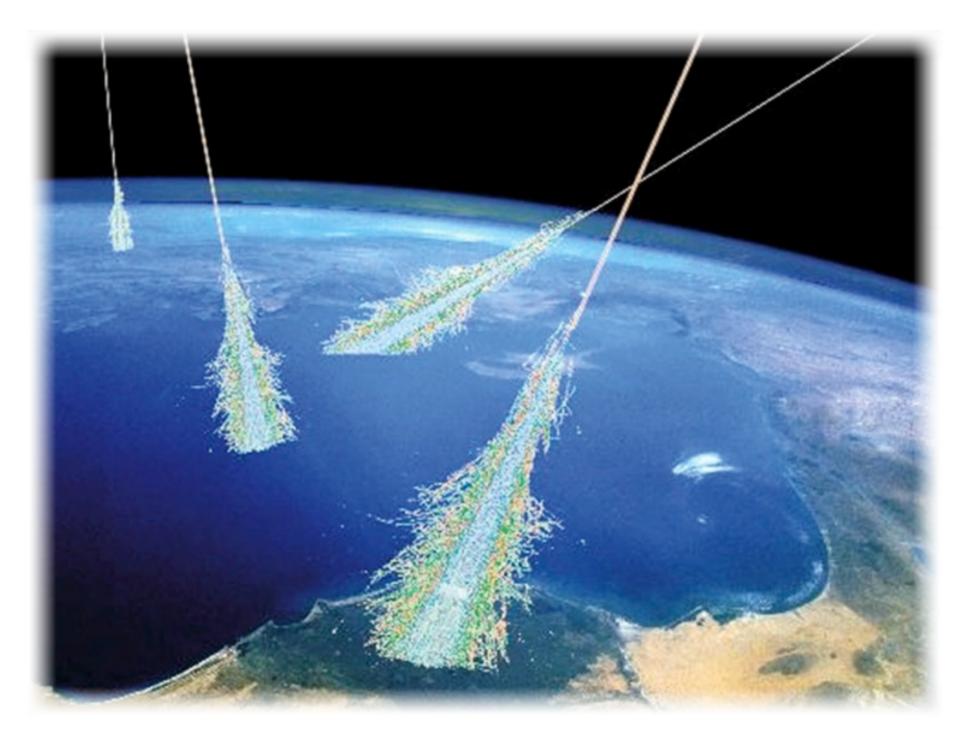
Note: Energy loss by Cherenkov radiation very small w.r.t. ionization (< 1%).


Example: [Proton with E_{kin} =1 GeV passing through 1 cm water]

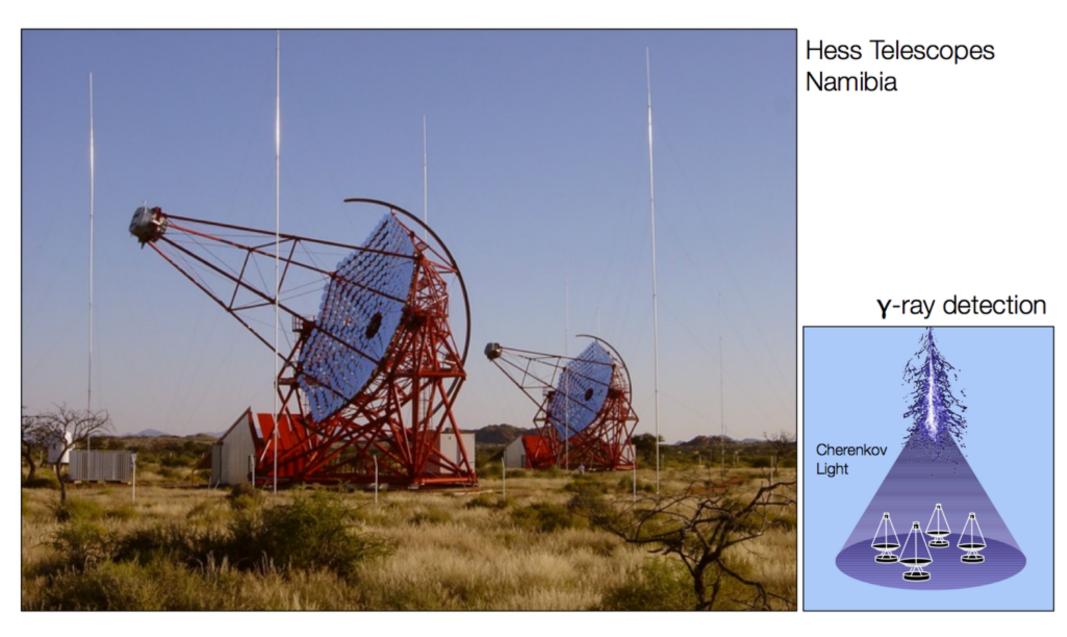
 $\beta = p/E \approx 0.875; \cos \theta_{\rm C} = 1/n\beta = 0.859 \rightarrow \theta_{\rm C} = 30.8^{\circ}$ d²N/(dEdx) = 370 sin² $\theta_{\rm C}$ eV⁻¹ cm⁻¹ ≈ 100 eV⁻¹ cm⁻¹

→ ΔE_{loss} = <E>d²N/(dEdx) ΔEΔx = 2.5 eV · 100 eV⁻¹ cm⁻¹ · 5 eV · 1 cm = 1.25 keV Visible light only! [E = 1 - 5 eV; λ = 300 - 600 nm]

IDENTIFYING PARTICLES with CERENKOV RADIATION


Choose n₁, n₂ in such a way that for:

- n_2 : β_{π} , $\beta_{K} > 1/n_2$ and $\beta_{p} < 1/n_2$
- n_1 : $\beta_{\pi} > 1/n_1$ and β_{K} , $\beta_{P} < 1/n_1$
- Light in C_1 and $C_2 \rightarrow$ identified pion
- Light in C₂ and not in C₁ \rightarrow identified kaon
- Light neither in C₁ and C₂ \rightarrow
- identified proton


CERENKOV RADIATION: MOMENTUM DEPENDENCE

COSMIC RAYS

HESS EXPERIMENT

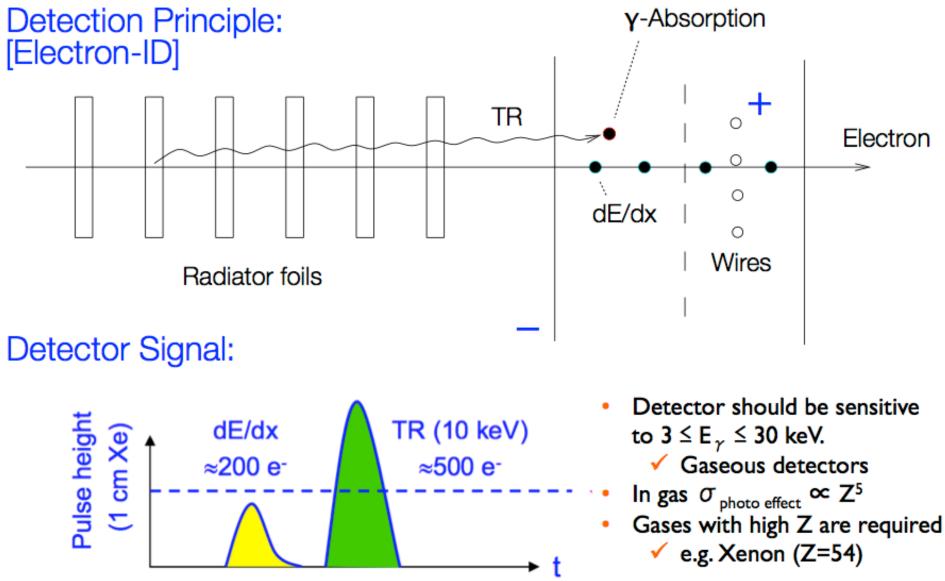
Transition radiation

Transition radiation occurs if a relativistic particle (large γ) passes the boundaries between two media with different refraction indices.

Intensity of radiation is logarithmically proportional to y

Angular distribution strongly forward peaked [Interference; coherence condition]

Coherent radiation is generated only over a very small formation length


Volume element from which coherent radiation is emitted ...

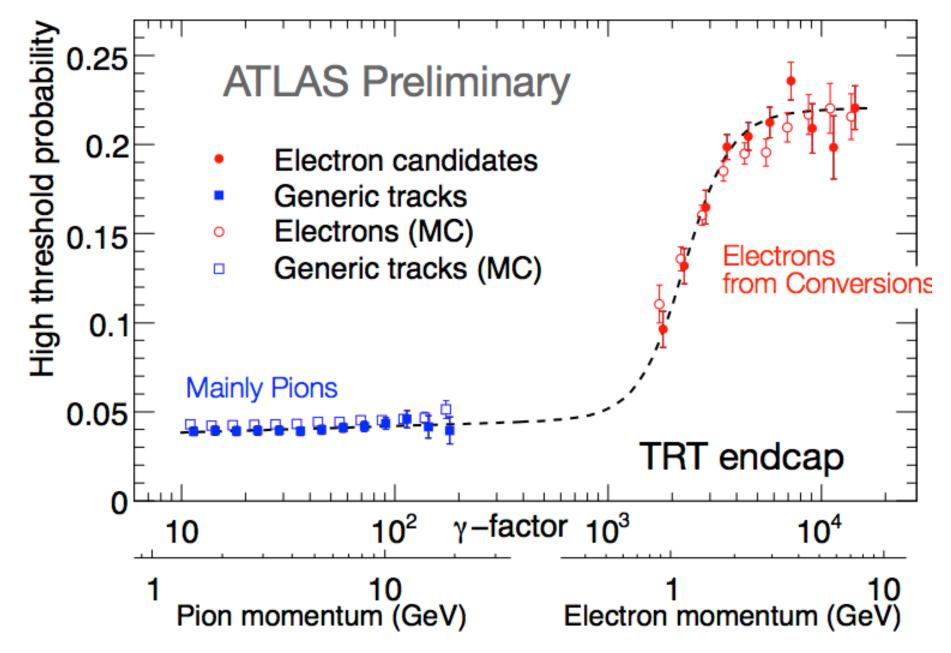
Maximum energy of radiated photons limited by plasma frequency ... [results from requiring V $\neq 0 \rightarrow \omega = \gamma \omega_p$] $\theta \leq 1/\gamma$ Plasma frequency [from Drude model] $D = \gamma C/\omega_p$ $\rho_{max} = \gamma V/\omega$ [transversal range with large polarization] $V = \pi D \rho_{max}^{2}$

 $E_{max} = \gamma \hbar \omega_{p}$ [X-Rays -> large \gamma!!]

Typical values:
$$CH_2$$
: $\hbar \omega_p = 20 \text{ eV}; \gamma = 10^3$ $D = 10 \mu m$ [Air: $\hbar \omega_p = 0.7 \text{ eV}$] $[d > D: absorption dominates]$

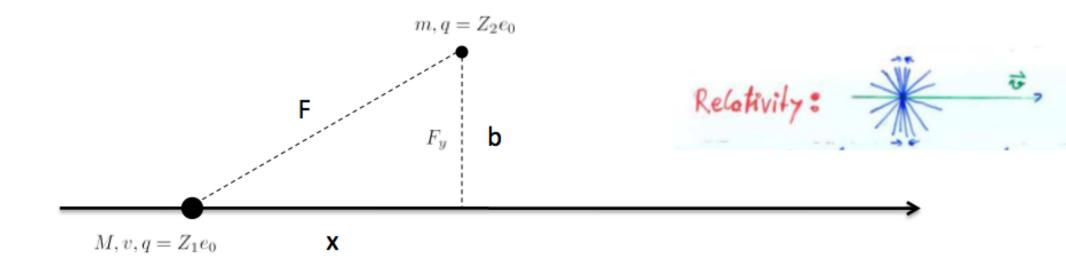
IDENTIFYING PARTICLES WITH TRANSITION RADIATION

ATLAS TRANSITION RADIATION TRACKER


Straw Tube Tracker with interspace filled with foam

➤ Tracking & transition radiation

IDENTIFYING PARTICLES WITH TRANSITION RADIATION



CREDIT and BIBLIOGRAPHY

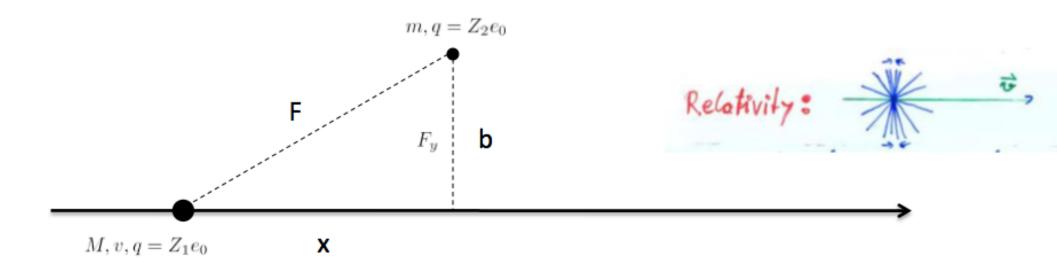
A lot of material in these lectures are from:

Daniel Fournier @ EDIT2011 Marco Delmastro @ ESIPAP 2014 Weiner Raigler @ AEPSHEP2013 Hans Christian Schultz-Coulon's lectures Carsten Niebuhr's lectures [1][2][3] Georg Streinbrueck's lecture Pippa Wells @ EDIT2011 Jérôme Baudot @ ESIPAP2014

IONISATION & EXCITATION

While the charged particle is passing another charged particle the Coulomb force is acting, resulting in momentum transfer.

$$F_y = \frac{Z_1 Z_2 e_0^2}{4\pi\varepsilon_0 (b^2 + v^2 t^2)} \frac{b}{\sqrt{b^2 + v^2 t^2}}$$


$$\Delta p = \int_{-\infty}^{\infty} F_y(t) dt = \frac{2Z_1 Z_2 e_0^2}{4\pi\varepsilon_0 v b}$$

The relativistic form of the transverse electric field does not change the momentum transfer. The transverse field is stronger, but the time of action is shorter.

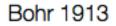
$$F_y = \frac{\gamma Z_1 Z_2 e_0^2 b}{4\pi\varepsilon_0 (b^2 + \gamma^2 v^2 t^2)^{3/2}}$$

$$\Delta p = \int_{-\infty}^{\infty} F_y(t) dt = \frac{2Z_1 Z_2 e_0^2}{4\pi\varepsilon_0 v b}$$

IONISATION & EXCITATION

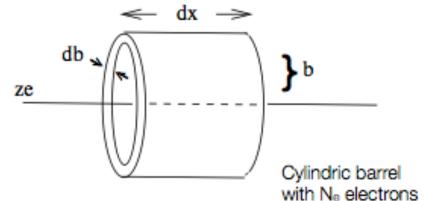
The transferred energy

$$\Delta E = \frac{(\Delta p)^2}{2m} = \frac{Z_2^2}{m} \frac{2Z_1^2 e_0^4}{(4\pi\varepsilon_0)^2 v^2 b^2}$$


$$\Delta E(electrons) = Z_2 \frac{1}{m_e} \frac{2Z_1^2 e_0^4}{(4\pi\varepsilon_0)^2 v^2 b^2}$$

$$\Delta E(nucleus) = \frac{Z_2^2}{2Z_2m_p} \frac{2Z_1^2 e_0^4}{(4\pi\varepsilon_0)^2 v^2 b^2}$$

The incoming particle transfers energy mainly/only to the atomic electrons.


$$\frac{\Delta E(electrons)}{\Delta E(nucleus)} = \frac{2m_p}{m_e} \approx 4000$$

BETHE-BLOCH FORMULA - CLASSICAL DERIVATION

Energy transfer onto single electron for impact parameter b:

$$\Delta E(b) = rac{\Delta p^2}{2m_{
m e}}$$

Consider cylindric barrel \rightarrow N_e = n·(2\pi b)·dbdx

Energy loss per path length dx for distance between b and b+db in medium with electron density n:

Energy loss!

$$-dE(b) = \frac{\Delta p^2}{2m_{\rm e}} \cdot 2\pi nb \, db \, dx = \frac{4z^2 e^4}{2b^2 v^2 m_{\rm e}} \cdot 2\pi nb \, db \, dx = \frac{4\pi \, n \, z^2 e^4}{m_{\rm e} v^2} \frac{db}{b} dx$$

Diverges for b \rightarrow 0; integration only for relevant range [b_{min}, b_{max}]: / Bohr 1913 $-\frac{dE}{dx} = \frac{4\pi n z^2 e^4}{m_e v^2} \cdot \int_{b_{min}}^{b_{max}} \frac{db}{b} = \frac{4\pi n z^2 e^4}{m_e v^2} \ln \frac{b_{max}}{b_{min}}$

BETHE-BLOCH FORMULA - CLASSICAL DERIVATION

Determination of relevant range [bmin, bmax]: [Arguments: b_{min} > λ_e, i.e. de Broglie wavelength; b_{max} < ∞ due to screening ...]

Bohr 1913

$$b_{\min} = \lambda_{e} = \frac{h}{p} = \frac{2\pi\hbar}{\gamma m_{e}v}$$
 Use Heisenberg uncertainty print that electron is located within c
 $b_{\max} = \frac{\gamma v}{\langle \nu_{e} \rangle}$; $\left[\gamma = \frac{1}{\sqrt{1 - \beta^{2}}} \right]$ Interaction time (b/v) must be more of the electron (γ/ν_{e}) to guarant

inciple or de Broglie wavelength ...

much shorter than period tee relevant energy transfer ...

[adiabatic invariance]

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_{\rm e} c^2 \beta^2} n \cdot \ln \frac{m_{\rm e} c^2 \beta^2 \gamma^2}{2\pi \hbar \langle \nu_{\rm e} \rangle} \quad |$$

Deviates by factor 2 om QM derivation

Electron density: $n = N_A \cdot \rho \cdot Z/A \parallel$ Effective Ionization potential: $| \sim h < v_{e} >$