
LongGang Pang Identifying QCD transition using deep learning

EoS-meter of QCD transition from deep
learning

1

 arXiv:1612.04262 [hep-ph]

LongGang Pang
UC Berkeley & LBNL

With Kai Zhou, Nan Su, Hannah Petersen, Horst Stoecker
 from Frankfurt Institute for Advanced Studies, Germany

and Xin-Nian Wang from CCNU and LBNL

2017.06.16 in CERN, ML group

LongGang Pang Identifying QCD transition using deep learning

What is deep learning?

2

Artificial Intelligence (AI)

Machine Learning (ML)

Learning multiple levels of
representations using hierarchical or

recurrent structures

Deep Learning (DL)

1. Big Data
2. GPU parallel
3. New architecture

2006
Geoffrey Hinton

• PCA, kNN, k-means

• SVM

• Bayesian analysis

• Decision Tree

• Random Forest

• Neural Network

• Ensemble method

• …

LongGang Pang Identifying QCD transition using deep learning

Why deep learning?

3

Credit: Andrew NG

LongGang Pang Identifying QCD transition using deep learning

Most popular DL method in physics: DCNN

4

Fully
Connected

Locally
Connected

Locally
Connected

+
Share Weights

Convolution

“Deep Learning” BookDCNN = Deep Convolution Neural Network

LongGang Pang Identifying QCD transition using deep learning

Most popular DL method in physics: DCNN

5

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201614

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Fig from CS231N, Stanford

1. Much fewer parameters (local connection, share weights)

2. Translating, rotating, scaling invariance

LongGang Pang Identifying QCD transition using deep learning

Deep Convolution Neural Network (DCNN)

6

• Extract abstract concepts (what is a dog?)

• High-quality segmentation mask, pixel level precision

dining table.96

person1.00

person1.00 person1.00 person1.00 person1.00
person1.00

person1.00 person.94

bottle.99

bottle.99
bottle.99

motorcycle1.00 motorcycle1.00

person1.00
person1.00

person.96person1.00person.83
person.96

person.98person.90 person.92person.99person.91

bus.99

person1.00

person1.00 person1.00

backpack.93

person1.00

person.99

person1.00

backpack.99

person.99

person.98person.89person.95

person1.00

person1.00

car1.00

traffic light.96

person.96

truck1.00 person.99
car.99

person.85

motorcycle.95
car.99car.92person.99person1.00

traffic light.92 traffic light.84

traffic light.95

car.93person.87

person1.00

person1.00

umbrella.98

umbrella.98

backpack1.00

handbag.96

elephant1.00

person1.00
person1.00person.99

sheep1.00

person1.00

sheep.99

sheep.91 sheep1.00

sheep.99

sheep.99

sheep.95

person.99

sheep1.00
sheep.96

sheep.99

sheep.99

sheep.96

sheep.96

sheep.96
sheep.86

sheep.82sheep.93

dining table.99

chair.99

chair.90

chair.99

chair.98

chair.96

chair.86

chair.99

bowl.81

chair.96

tv.99

bottle.99

wine glass.99wine glass1.00

bowl.85

knife.83

wine glass1.00wine glass.93

wine glass.97

fork.95

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

a seemingly minor change, RoIAlign has a large impact: it
improves mask accuracy by relative 10% to 50%, showing
bigger gains under stricter localization metrics. Second, we
found it essential to decouple mask and class prediction: we
predict a binary mask for each class independently, without
competition among classes, and rely on the network’s RoI
classification branch to predict the category. In contrast,
FCNs usually perform per-pixel multi-class categorization,
which couples segmentation and classification, and based
on our experiments works poorly for instance segmentation.

Without bells and whistles, Mask R-CNN surpasses all
previous state-of-the-art single-model results on the COCO
instance segmentation task [28], including the heavily-
engineered entries from the 2016 competition winner. As
a by-product, our method also excels on the COCO object
detection task. In ablation experiments, we evaluate multi-
ple basic instantiations, which allows us to demonstrate its
robustness and analyze the effects of core factors.

Our models can run at about 200ms per frame on a GPU,
and training on COCO takes one to two days on a single
8-GPU machine. We believe the fast train and test speeds,
together with the framework’s flexibility and accuracy, will
benefit and ease future research on instance segmentation.

Finally, we showcase the generality of our framework
via the task of human pose estimation on the COCO key-
point dataset [28]. By viewing each keypoint as a one-hot
binary mask, with minimal modification Mask R-CNN can
be applied to detect instance-specific poses. Without tricks,
Mask R-CNN surpasses the winner of the 2016 COCO key-
point competition, and at the same time runs at 5 fps. Mask
R-CNN, therefore, can be seen more broadly as a flexible
framework for instance-level recognition and can be readily
extended to more complex tasks.

We will release code to facilitate future research.

2. Related Work
R-CNN: The Region-based CNN (R-CNN) approach [13]
to bounding-box object detection is to attend to a manage-
able number of candidate object regions [38, 20] and evalu-
ate convolutional networks [25, 24] independently on each
RoI. R-CNN was extended [18, 12] to allow attending to
RoIs on feature maps using RoIPool, leading to fast speed
and better accuracy. Faster R-CNN [34] advanced this
stream by learning the attention mechanism with a Region
Proposal Network (RPN). Faster R-CNN is flexible and ro-
bust to many follow-up improvements (e.g., [35, 27, 21]),
and is the current leading framework in several benchmarks.

Instance Segmentation: Driven by the effectiveness of R-
CNN, many approaches to instance segmentation are based
on segment proposals. Earlier methods [13, 15, 16, 9] re-
sorted to bottom-up segments [38, 2]. DeepMask [32] and
following works [33, 8] learn to propose segment candi-
dates, which are then classified by Fast R-CNN. In these
methods, segmentation precedes recognition, which is slow
and less accurate. Likewise, Dai et al. [10] proposed a com-
plex multiple-stage cascade that predicts segment proposals
from bounding-box proposals, followed by classification.
Instead, our method is based on parallel prediction of masks
and class labels, which is simpler and more flexible.

Most recently, Li et al. [26] combined the segment pro-
posal system in [8] and object detection system in [11] for
“fully convolutional instance segmentation” (FCIS). The
common idea in [8, 11, 26] is to predict a set of position-
sensitive output channels fully convolutionally. These
channels simultaneously address object classes, boxes, and
masks, making the system fast. But FCIS exhibits system-
atic errors on overlapping instances and creates spurious
edges (Figure 5), showing that it is challenged by the fun-
damental difficulties of segmenting instances.

2

Mask R-CNN Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, 2017.04.05

https://arxiv.org/abs/1703.06870
https://arxiv.org/find/cs/1/au:+He_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gkioxari_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Dollar_P/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Girshick_R/0/1/0/all/0/1

LongGang Pang Identifying QCD transition using deep learning

Deep Convolution Neural Network (DCNN)

7

• Extract/apply artistic style to new FIAS building.

Perceptual losses for real-time style transfer and super-resolution,
by Johnson, Justin and Alahi, Alexandre and Fei-Fei, Li

https://github.com/jcjohnson/fast-neural-style

LongGang Pang Identifying QCD transition using deep learning

Deep Convolution Neural Network (DCNN)

8

• Understand actions and relations.

• Treat objects of the images as irrelevant features.

Google, DeepMind

LongGang Pang Identifying QCD transition using deep learning

⌘

�

b
ea
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

| {z }
⇥3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

MIT–CTP 4866

Deep learning in color: towards automated quark/gluon

jet discrimination

Patrick T. Komiske,

a
Eric M. Metodiev,

a
and Matthew D. Schwartz

b

aCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
bDepartment of Physics, Harvard University, Cambridge, MA 02138, USA

E-mail: pkomiske@mit.edu, metodiev@mit.edu,

schwartz@physics.harvard.edu

Abstract: Artificial intelligence o↵ers the potential to automate challenging data-processing

tasks in collider physics. To establish its prospects, we explore to what extent deep learning

with convolutional neural networks can discriminate quark and gluon jets better than ob-

servables designed by physicists. Our approach builds upon the paradigm that a jet can be

treated as an image, with intensity given by the local calorimeter deposits. We supplement

this construction by adding color to the images, with red, green and blue intensities given

by the transverse momentum in charged particles, transverse momentum in neutral particles,

and pixel-level charged particle counts. Overall, the deep networks match or outperform tra-

ditional jet variables. We also find that, while various simulations produce di↵erent quark and

gluon jets, the neural networks are surprisingly insensitive to these di↵erences, similar to tra-

ditional observables. This suggests that the networks can extract robust physical information

from imperfect simulations.

ar
X

iv
:1

61
2.

01
55

1v
2

 [h
ep

-p
h]

 3
 F

eb
 2

01
7

Deep learning in Physics (Hadron colliders)

9

[63] A. Hornig, Y. Makris, and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET,
JHEP 04 (2016) 097, [arXiv:1601.01319].

[64] J. R. Walsh and S. Zuberi, Factorization Constraints on Jet Substructure,
arXiv:1110.5333.

[65] A. J. Larkoski, I. Moult, and D. Neill, Power Counting to Better Jet Observables, JHEP
1412 (2014) 009, [arXiv:1409.6298].

[66] A. J. Larkoski, I. Moult, and D. Neill, Building a Better Boosted Top Tagger, Phys.Rev.
D91 (2015), no. 3 034035, [arXiv:1411.0665].

[67] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, Jet-Images: Computer Vision
Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118, [arXiv:1407.5675].

[68] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, Jet-images —
deep learning edition, JHEP 07 (2016) 069, [arXiv:1511.05190].

[69] L. G. Almeida, M. Backović, M. Cliche, S. J. Lee, and M. Perelstein, Playing Tag with
ANN: Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086,
[arXiv:1501.05968].

[70] P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson, Jet Substructure Classification
in High-Energy Physics with Deep Neural Networks, Phys. Rev. D93 (2016), no. 9 094034,
[arXiv:1603.09349].

[71] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban, and D. Whiteson, Jet Flavor
Classification in High-Energy Physics with Deep Neural Networks, arXiv:1607.08633.

[72] J. S. Conway, R. Bhaskar, R. D. Erbacher, and J. Pilot, Identification of High-Momentum
Top Quarks, Higgs Bosons, and W and Z Bosons Using Boosted Event Shapes,
arXiv:1606.06859.

[73] J. Barnard, E. N. Dawe, M. J. Dolan, and N. Rajcic, Parton Shower Uncertainties in Jet
Substructure Analyses with Deep Neural Networks, arXiv:1609.00607.

[74] A. J. Larkoski, G. P. Salam, and J. Thaler, Energy Correlation Functions for Jet
Substructure, JHEP 1306 (2013) 108, [arXiv:1305.0007].

[75] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, Jet substructure as a new
Higgs search channel at the LHC, Phys.Rev.Lett. 100 (2008) 242001, [arXiv:0802.2470].

[76] S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Techniques for improved heavy particle
searches with jet substructure, Phys.Rev. D80 (2009) 051501, [arXiv:0903.5081].

[77] S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Recombination Algorithms and Jet
Substructure: Pruning as a Tool for Heavy Particle Searches, Phys.Rev. D81 (2010)
094023, [arXiv:0912.0033].

[78] D. Krohn, J. Thaler, and L.-T. Wang, Jet Trimming, JHEP 1002 (2010) 084,
[arXiv:0912.1342].

[79] J. Dolen, P. Harris, S. Marzani, S. Rappoccio, and N. Tran, Thinking outside the ROCs:
Designing Decorrelated Taggers (DDT) for jet substructure, JHEP 05 (2016) 156,
[arXiv:1603.00027].

[80] Identification of boosted, hadronically-decaying W and Z bosons in
p
s = 13 TeV Monte

Carlo Simulations for ATLAS, Tech. Rep. ATL-PHYS-PUB-2015-033, CERN, Geneva,
Aug, 2015.

– 65 –

Deep CNN match or outperform
 traditional jet observables.

LongGang Pang Identifying QCD transition using deep learning

Deep learning in Physics (CondMat Ising)

10

8

8

FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.

2x2 maps
(64 per sublattice)

Fully connected
layer (64)

Softmax

dropout
regularization

FIG. 4. Illustrating the convolutional neural network. The first hidden layer convolves 64 2 ⇥ 2

filters with the spin configuration on each sublattice, followed by rectified linear units (ReLu). The

outcome is followed by fully-connected layer with 64 units and a softmax output layer. The green

line represents the sliding of the maps across the configuration.

sets that violate an extensive fraction of the local energetic constraints of the theory, we

conclude that the discriminative power of the CNN relies on the detection of these satis-

fied constraints. Furthermore, test sets with defects that retain most local constraints but

disrupt non-local features, like the extended closed-loop gas picture or the associated topo-

logical degeneracy [7], indicate that local constraints are the only features that the CNN

relies on for classification of the ground state. In view of these observations, we construct

a simplified analytical toy model of our original CNN designed to explicitly exploit local

constraints in the classification task. Such a model discriminates high-temperature from

ground states with an accuracy of 100%. Details of the behavior of the CNN with various

test sets, as well as the details of the analytical model, are contained in the supplementary

material.

We have shown that neural network technology, developed for engineering applications

such as computer vision and natural language processing, can be used to encode phases of

matter and discriminate phase transitions in correlated many-body systems. In particular,

we have argued that neural networks encode information about conventional ordered phases

by learning the order parameter of the phase, without knowledge of the energy or locality

conditions of Hamiltonian. Furthermore, we have shown that neural networks can encode

basic information about the ground states of unconventional disordered models, such as

Machine learning phases of matter

Juan Carrasquilla1 and Roger G. Melko2, 1

1Perimeter Institute for Theoretical Physics,

Waterloo, Ontario N2L 2Y5, Canada

2Department of Physics and Astronomy,

University of Waterloo, Ontario, N2L 3G1, Canada

Neural networks can be used to identify phases and phase transitions in condensed

matter systems via supervised machine learning. Readily programmable through

modern software libraries, we show that a standard feed-forward neural network

can be trained to detect multiple types of order parameter directly from raw state

configurations sampled with Monte Carlo. In addition, they can detect highly non-

trivial states such as Coulomb phases, and if modified to a convolutional neural

network, topological phases with no conventional order parameter. We show that this

classification occurs within the neural network without knowledge of the Hamiltonian

or even the general locality of interactions. These results demonstrate the power

of machine learning as a basic research tool in the field of condensed matter and

statistical physics.

ar
X

iv
:1

60
5.

01
73

5v
1

 [c
on

d-
m

at
.st

r-
el

]
5

M
ay

 2
01

6

Determining phase from spin configurations

LongGang Pang Identifying QCD transition using deep learning

Deep learning in Physics (Solving Schrodinger Eqs)

11

2

output

input

conv 7

fc 1

loss

conv 1

conv 1a

conv 1b

conv 2

conv 2a

conv 2b

conv 3

conv 3a

conv 3b

conv 4a

conv 4b

conv 5

conv 5a

conv 5b

conv 6

conv 6a

conv 6b

potential
energy

conv 4 fc 2

features
labels

reducing
convolutions

non-reducing
convolutions

256×256 128×128 64×64 32×32 16×16 8×8 4×4 2×2
layer height/width

FIG. 1. In this work, we use the machinery of deep learning to learn the mapping between potential and energy, bypassing the
need to numerically solve the Schrödinger equation, and the need for computing wavefunctions. The neural network architecture
we used (shown here) consisted primarily of convolutional layers, with two fully-connected layers at the top.

mands of a large artificial neural network by employing
many sequential layers, forming a hierarchy of feature
detection [32]. Deep neural networks have proven invalu-
able in high-energy physics, allowing physicists to sift
through massive amounts of experimental data and clas-
sify events e�ciently and automatically [33–35]. Deep
neural networks are known to be particularly well suited
to data rooted in physical origin [36, 37]. Many recent
successes involve a specific class of deep neural network
known as convolutional neural networks. Inspired by
models of the animal visual cortex [38], convolutional
neural networks are well suited to applications where the
input data features can be represented in some form of
spatially-correlated data structure, such as the pixels of
an image [39]. Convolutional neural networks have re-
peatedly performed well in the areas of handwriting and
object classification [9, 40–42]. Applications in the field
of electronic structure, however, are few, although recent
work focused on training against a geometric matrix rep-
resentation looks particularly promising [43].

Developing a deep learning model involves both the
design of the network architecture and the acquisition of
training data. The latter is the most important aspect of
a machine learning model, as it defines the transferability
of the resulting model. We investigated four classes of
potentials: simple harmonic oscillators (SHO), “infinite”
wells (IW, i.e. “particle in a box”), double-well inverted
Gaussians (DIG), and random potentials (RND). Each
potential can be thought of as a grayscale image: a 256⇥
256 grid of floating-point numbers.

We implemented a standard finite-di↵erence [44]
method to solve the eigenvalue problem

Ĥ ⌘ (T̂ + V̂) = " (1)

for each potential V we created. The potentials were
generated with a dynamic range suitable to emit ground-

FIG. 2. Wavefunctions (probability density) | 0|2 and the
corresponding potentials V (r) for two random potentials.

state energies in the range of approximately 0 to 400
mHa. With the random potentials, special care was taken
to ensure that some training examples produced non-
trivial wavefunctions (Fig. 2). Atomic units are used,
such that h̄ = me = 1. The potentials are represented
on a square domain from �20 to 20 a.u., discretized on
a 256 ⇥ 256 grid. As the simple harmonic oscillator po-
tentials have an analytic solution, we used this as refer-
ence with which to validate the accuracy of the solver.
The median absolute error between the analytic and the
calculated energies for all simple harmonic oscillator po-
tentials was 0.12 mHa. We discuss the generation of all
potentials further in the Supplementary Information.

The simple harmonic oscillator presents the simplest
case for a convolutional neural network as there is an an-
alytic solution dependent on two simple parameters (k

x

and k
y

) which uniquely define the ground-state energy
of a single electron ("0 = h̄

2 (
p
k
x

+
p

k
y

)). Furthermore,
these parameters represent a very physical and visible
quantity: the curvature of the potential in the two pri-
mary axes. Although these parameters are not provided
to the neural network explicitly, the fact that a simple

Deep learning and the Schrodinger equation, by K. Mills, M. Spanner, Tamblyn (February 7, 2017)

4

FIG. 4. Histograms of the true vs. predicted energies for each example in the test set indicate the performance of the various
models. The insets show the distribution of error away from the diagonal line representing perfect predictions. A 1 mHa2

square bin is used for the main histograms, and a 1 mHa bin size for the inset histogram. During training, the neural network
was not exposed to the examples on which theses plots are based. The higher error at high energies in (d) is due to fewer
training examples being present the dataset at these energies. The histogram shown in (d) is for the further-trained model,
described in the text.

FIG. 5. Histograms of the true vs. predicted energies for the
model trained on the (a) kinetic energy, and (b) excited-state
energy of the double-well inverted Gaussian.

potentials, it is impressive that the convolutional neural
network was able to learn how to predict the energy with
such a high degree of accuracy.

Now that we have a trained model that performs well
on the random test set, we investigated how this trained
model transfers to the other classes of potentials. The
model trained on the random dataset is able to predict
the ground-state energy of the double-well inverted Gaus-
sian potentials with a MAE of 2.94 mHa. We can see
in Fig. 5(c) that the model fails at high energies, an
expected result given that the model was not exposed
to many examples in this energy regime during training
on the overall lower-energy random dataset. This mod-
erately good performance is not entirely surprising; the
production of the random potentials includes an element
of Gaussian blurring, so the neural network would have
been exposed to features similar to what it would see in
the double-well inverted Gaussian dataset. However, this
moderate performance is testament to the transferability
of convolutional neural network models.

The total energy is just one of the many quantities
associated with these one-electron systems. To demon-
strate the applicability of deep neural network to other
quantities, we trained a model on the first excited-state

energy "1 of the double-well inverted Gaussian poten-
tials. The model achieved a MAE of 10.93 mHa. We
now have two separate models capable of predicting
the ground-state, and first excited-state energies, respec-
tively, demonstrating that a neural network can learn
quantities other than the ground-state energy.
The ground-state and first excited-state are both eigen-

values of the Hamiltonian. Finally, we investigated the
training of a model on the expectation value of the ki-
netic energy, hT̂ i = h 0|T̂ | 0i, under the ground state
wavefunction 0 that we computed numerically for the
random potentials. Since Ĥ and T̂ do not commute,
the prediction of hT̂ i can no longer be summarized as
an eigenvalue problem. The trained model predicts the
kinetic energy value with a MAE of 2.98 mHa. While
the spread of testing examples in Fig. 5(a) suggests the
model performs more poorly, the absolute error is still
small.
In summary, convolutional deep neural network are

likely particularly well suited for electronic structure cal-
culations as they are designed for data which has a spatial
encoding of information. For this case, even though our
convolutional neural network produces a highly accurate
result, and does so much faster than our likely less-than-
optimal finite-di↵erence numerical solver, the time-to-
solution is su�ciently small in absolute terms that the ap-
plication of a convolutional neural network is not revolu-
tionary. However, as the number of electrons in a system
increases, the computational complexity grows polynomi-
ally. Accurate electronic structure methods (e.g. coupled
cluster) exhibit a scaling with respect to the number of
particles of N7 and even the popular Kohn-Sham for-
malism of density functional theory scales as N3 [47, 48].
The evaluation of a convolutional neural network exhibits
no such scaling, and while the training process for more
complicated systems would be more expensive, this is a
one-time cost.
In this work, we have taken a simple problem (one elec-

tron in a confining potential), and demonstrated that a

https://arxiv.org/pdf/1702.01361.pdf

LongGang Pang Identifying QCD transition using deep learning

Relativistic high energy heavy ion collisions

12

LongGang Pang Identifying QCD transition using deep learning

Current status of model-data comparison

13

Determining the QGP Properties via a
Model to Data Comparison

experimental data:
π/K/P spectra
yields vs. centrality & beam
elliptic flow
HBT
charge correlations & BFs
density correlations

Model Parameter:
eqn. of state

shear viscosity
initial state

pre-equilibrium dynamics
thermalization time

quark/hadron chemistry
particlization/freeze-out

Fig from S. Bass QM2017 (Bayesian method)

Multiple parameters entangle with multiple observables

LongGang Pang Identifying QCD transition using deep learning

state-of-the-art model-data comparison

14

11

100

130

160

no
rm

norm p k w [fm] η/s min η/s Vlope † ζ/s norm

norm

Tsw [GeV]

-1.0

0.0

1.0

p

p

0.8

1.5

2.2

k

k

0.4

0.7

1.0

w
 [f

m
] w

 [fm
]

0.0

0.15

0.3

η/
s

m
in

η/s m
in

0.0

1.0

2.0

η/
s

Vlo
pe

†

η/s Vlope
†

0.0

1.0

2.0

ζ/
s

no
rm

ζ/s norm

100 130 160
norm

0.14

0.15

0.16

T
sw

 [G
eV

]

-1.0 0.0 1.0
p

0.8 1.5 2.2
k

0.4 0.7 1.0
w [fm]

0.0 0.15 0.3
η/s min

0.0 1.0 2.0

η/s Vlope †
0.0 1.0 2.0
ζ/s norm

0.14 0.15 0.16
Tsw [GeV]

T
sw [G

eV
]

FIG. 7. Posterior distributions for the model parameters from calibrating to identified particles yields (blue, lower triangle)
and charged particles yields (red, upper triangle). The diagonal has marginal distributions for each parameter, while the
o↵-diagonal contains joint distributions showing correlations among pairs of parameters. †The units for ⌘/s slope are [GeV�1].

We place a uniform prior on the model parameters, i.e.
the prior is constant within the design range and zero
outside. Combined with the likelihood (29) and Bayes’
theorem (28), we can easily evaluate the posterior prob-
ability at any point in parameter space.

Posterior distributions are typically constructed using
Markov chain Monte Carlo (MCMC) methods. MCMC
algorithms generate random walks through parameter
space by accepting or rejecting proposal points based on

the posterior probability; after many steps the chain con-
verges to the desired posterior.
We use the a�ne-invariant ensemble sampler [113,

114], an e�cient MCMC algorithm that uses a large en-
semble of interdependent walkers. We first run O(106)
steps to allow the chain to equilibrate, discard these
“burn-in” samples, then generate O(107) posterior sam-
ples.

8

III. PARAMETER ESTIMATION

With the full evolution model in hand, a number of im-
portant model parameters—related to both initial-state
entropy deposition and the QGP medium—remain un-
determined. These parameters typically correlate among
each other and a↵ect multiple observables, hence, if we
wish to describe a wide variety of experimental observ-
ables, the only option is a simultaneous fit to all param-
eters. However, it is not feasible to do this directly, since
simulating observables at even a single set of parameter
values requires thousands of individual events and signif-
icant computation time.

To overcome this limitation, we employ a Bayesian
method for parameter estimation with computationally
expensive models [23–26]. Briefly, the model is evalu-
ated at a relatively small O(102) number of parameter
points, the output is interpolated by a Gaussian pro-
cess emulator, and the emulator is used to systematically
explore the parameter space with Markov chain Monte
Carlo methods. This section summarizes the methodol-
ogy; see Ref. [32] for a complete treatment.

A. Model parameters and observables

We choose a set of nine model parameters for estima-
tion. Four control the parametric initial state:

1. the overall normalization factor,

2. entropy deposition parameter p from the general-
ized mean ansatz Eq. (14),

3. gamma shape parameter k, which sets nucleon mul-
tiplicity fluctuations in Eq. (12), and

4. Gaussian nucleon width w from Eq. (11), which
determines initial-state granularity;

the remaining five are related to the QGP medium:

5–7. the three parameters (⌘/s hrg, min, and slope) in
Eq. (4) that set the temperature dependence of the
specific shear viscosity,

8. normalization prefactor for the temperature depen-
dence of bulk viscosity Eq. (5), and

9. particlization temperature T

switch

.

This parameter set will enable simultaneous characteri-
zation of the initial state and medium, including any cor-
relations. Table I summarizes the parameters and their
corresponding ranges, which are intentionally wide to en-
sure that the optimal values are bracketed.

Having designated the model parameters and ranges,
we generated a 300 point maximin1 Latin hypercube de-
sign [110] in the nine-dimensional parameter space and

1
A “maximin” design maximizes the minimum distance between

points, thereby reducing large gaps and tight clusters.

TABLE I. Input parameter ranges for the initial condition
and hydrodynamic models.

Parameter Description Range

Norm Overall normalization 100–250

p Entropy deposition parameter �1 to +1

k Multiplicity fluct. shape 0.8–2.2

w Gaussian nucleon width 0.4–1.0 fm

⌘/s hrg Const. shear viscosity, T < Tc 0.3–1.0

⌘/s min Shear viscosity at Tc 0–0.3

⌘/s slope Slope above Tc 0–2 GeV�1

⇣/s norm Prefactor for (⇣/s)(T) 0–2

Tswitch Particlization temperature 135–165 MeV

executed O(104) minimum-bias Pb+Pb events at each of
the 300 points. Each event consists of a single “bumpy”
(i.e. Monte Carlo sampled) initial condition and hydro
simulation followed by multiple samples of the freeze-out
hypersurface. The number of samples is roughly inversely
proportional to the event’s particle multiplicity so that
total particle production is constant across all events—
typically ⇠5 samples for central events and up to 100
for peripheral events. This strategy leads to consistent
statistical uncertainties across all parameter points and
centrality classes.
Parameter estimation relies on observables that are

sensitive to varying the model inputs. For example, bulk
viscosity suppresses radial expansion, so a meaningful es-
timate of the (⇣/s)(T) normalization parameter requires
some measure of radial flow such as the mean transverse
momentum. Indeed, previous work has shown that fi-
nite bulk viscosity is necessary to simultaneously fit both
mean transverse momentum and anisotropic flow [44].
For the present study we compare to the centrality de-

pendence of identified particle yields dN/dy and mean
transverse momenta hpT i for charged pions, kaons, and
protons as well as two-particle anisotropic flow coe�-
cients vn{2} for n = 2, 3, 4. Table II summarizes the ob-
servables including kinematic cuts, centrality classes, and
experimental data, which are all from the ALICE experi-
ment, Pb+Pb collisions at

p
sNN = 2.76 TeV [108, 109].

These observables characterize the lowest-order moments
of the transverse momentum and flow distributions; in-
cluding higher-order quantities such as mean-square mo-
menta hp2T i [33] and four-particle cumulants vn{4} [111]
could enable a more precise fit.
When computing simulated observables, we strive to

replicate experimental methods as closely as possible. We
selected the same centrality classes as the correspond-
ing experimental data by sorting each design point’s
minimum-bias events by charged-particle multiplicity
dN

ch

/d⌘ at midrapidity (|⌘| < 0.5) and dividing the
events into the desired percentile bins. We computed
identified dN/dy and hpT i by simple counting and aver-
aging of the desired species at midrapidity (|y| < 0.5);

• Bayesian method

PRC 94.024907, J.E.Bernhard. et.el.

PRL. 114, 202301, S. Pratt, et.el

P (X|Y) =
P (Y |X)P (X)

P (Y)

X: model —— Y: data

LongGang Pang Identifying QCD transition using deep learning

Comments on the Bayesian method used in heavy ion physics

15

• Takes full use of the known features (expert-designed
observables)

• The features are usually event-averaged for both model
side and experimental side

• Can be improved by using more event-by-event
information

• Relies on known features instead of learning new
features from raw data (high dimensional data) or
Monte Carlo simulations.

LongGang Pang Identifying QCD transition using deep learning

Brain/CNN neglects irrelevant features

16

CNN

Brain/CNN

Dog

Cat

crossover or
1st order transition

⇢(pT ,�)

LongGang Pang Identifying QCD transition using deep learning

Key idea for this proof-of-principle study

17

Supervised learning using deep convolution
neural network with big amount of labeled

training data (spectra, EoS type) from event-by-
event relativistic hydrodynamics.

LongGang Pang Identifying QCD transition using deep learning

Open Source Libraries

18

Keras + TensorFlow in the
present study

Build one fully connected neural network (784->10->10 neurons) in Keras, for MNIST

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(output_dim=10, input_dim=784))
model.add(Activation("relu"))
model.add(Dense(output_dim=10))
model.add(Activation(“softmax"))
model.compile(loss='categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])

Keras is a high level neural network library, written in Python and capable
of running on top of either TensorFlow or Theano.

2017/01/15: Good news, Tensorflow chooses Keras!

LongGang Pang Identifying QCD transition using deep learning

t
e
m

p
e
r
a
t
u

r
e

T

µBbaryon chemical potential

hadronic matter

quark gluon plasma

color superconductor

c
r
o
s
s
o
v
e
r

first order

phase transition

critical

point

EOS

EOSQ

EOSL

EoS

19

LongGang Pang Identifying QCD transition using deep learning

Model (3+1D viscous hydrodynamics)

20

CLVisc: a (3+1)D viscous hydrodynamics parallelized on GPU using OpenCL

CLVisc, L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015

LongGang Pang Identifying QCD transition using deep learning

Initial state fluctuation to final state correlation

21

9

Figure 11. (color online) Comparison between CLVisc and
VISH2+1 for momentum eccentricity

face,

E
dN

i

dp3
=

dN
i

dY p
T

dp
T

d�
=

g
i

(2⇡)3

ˆ
pµd⌃

µ

f
eq

(1 + �f)

(68)
where d⌃

µ

is a small piece of freeze-out hyper-surface
determined by the constant freeze-out temperature T

f

or constant freeze-out energy density "
f

. Particles pass
through the freeze out hyper-surface elements are as-
sumed to obey fermion/boson distribution at tempera-
ture T

f

with non-equilibrium correction �f ,

f
eq

=
1

exp ((p · u� µ
i

)/T
f

)± 1
(69)

�f = (1⌥ f
eq

)
p
µ

p
⌫

⇡µ⌫

2T 2
f

("+ P)
(70)

where ± is for fermion/bosons respectively, µ
i

the e↵ec-
tive chemical potential in partial chemical equilibrium
EoS to fix the particle ratio when temperature is below
the chemical freeze-out temperature. µ

i

is set to 0 for
chemical equilibrium EoS.

Two methods are used to get the particle spectra on
the freeze out hypersurface. The first method is the
smooth particle spectra for N

Y

⇥N
pt

⇥N
�

= 41⇥15⇥48
tabulated (Y, p

T

,�) bins. The p
T

and � are chosen to
be the Gaussian Quadruture nodes, to make it easy to
get p

T

or � integrated spectra. In practice, there are
millions of small freeze-out hyper-surface elements d⌃

µ

,
which makes the spectra calculation quite cpu time con-
suming. Since the integration kernel in Eq. 68 is indepen-
dently calculated for di↵erent freeze out hyper-surface el-
ements before the summation, it is a perfect job to fit in
GPU parallel computing. If the Cooper-Frye integration
is only needed to perform once for all the hyper-surface,

Figure 12. Parallel reduction used on GPU to compute the
summation of particle spectra from millions of freeze-out
hyper-surface elements.

it can be done e↵ectively using the two step parallel re-
duction algorithm as shown in from Nvidia and AMD
SDK. In reality we need to do hyper-surface integration
308⇥41⇥15⇥48 times, it is quite slow to load each hyper-
surface element from global memory to private memory
so many times. In order to reduce the global memory
access, we share the hyper-surface elements in one work
group for multiple (pid, Y, p

T

,�) combinations. The cal-
culating time for 300 resonances is reduced from 8 hours
on a single core CPU to 3 minutes on the modern GPUs
like Nvidia K20 and AMD firepro S9150.
The second method is Monte Carlo sampling based on

Eq. 68. This method is similar to physical process and
the sampled particles can be redirected to hadron cascade
models like UrQMD, JAM and SMASH to simulate the
scattering and decays of hadron resonances. As a base-
line, we force the sampled resonances to decay to stable
particles immidiately after they are produced. Compar-
ing with this baseline one can distinguish the e↵ect of
hadronic rescaterring from resonance decay.
Since the particle number is Lorentz invariant, we can

sample particle in the comoving frame of fluid, then do
Lorentz boost according to the fluid velocity uµ. The
total number of hadrons produced from the freeze-out
hyper-surface is N = n ⇥ u · d⌃, where u · d⌃ is the in-
variant volume and n =

P
i

n
i

is the thermal density of
all hadrons in the co-moving frame. For systems without
bulk viscosity and net charge current (net baryon, net
electric charge or net strangeness), the thermal density
of hadron type i is fixed for one given freeze-out tem-
perature. In this case, the thermal densities n

i

for all
hadron species are computed in prior and tabulated for
e�ciency. While for systems with non-zero net charge
current and bulk viscosity, the thermal densities are dif-
ferent for hyper-surface elements that have di↵erent net
charge and bulk viscosity. In that case, the thermal den-
sity n

i

must be computed locally for each hyper-surface

Cooper-Frye Particalization

9

Figure 11. (color online) Comparison between CLVisc and
VISH2+1 for momentum eccentricity

face,

E
dN

i

dp3
=

dN
i

dY p
T

dp
T

d�
=

g
i

(2⇡)3

ˆ
pµd⌃

µ

f
eq

(1 + �f)

(68)
where d⌃

µ

is a small piece of freeze-out hyper-surface
determined by the constant freeze-out temperature T

f

or constant freeze-out energy density "
f

. Particles pass
through the freeze out hyper-surface elements are as-
sumed to obey fermion/boson distribution at tempera-
ture T

f

with non-equilibrium correction �f ,

f
eq

=
1

exp ((p · u� µ
i

)/T
f

)± 1
(69)

�f = (1⌥ f
eq

)
p
µ

p
⌫

⇡µ⌫

2T 2
f

("+ P)
(70)

where ± is for fermion/bosons respectively, µ
i

the e↵ec-
tive chemical potential in partial chemical equilibrium
EoS to fix the particle ratio when temperature is below
the chemical freeze-out temperature. µ

i

is set to 0 for
chemical equilibrium EoS.

Two methods are used to get the particle spectra on
the freeze out hypersurface. The first method is the
smooth particle spectra for N

Y

⇥N
pt

⇥N
�

= 41⇥15⇥48
tabulated (Y, p

T

,�) bins. The p
T

and � are chosen to
be the Gaussian Quadruture nodes, to make it easy to
get p

T

or � integrated spectra. In practice, there are
millions of small freeze-out hyper-surface elements d⌃

µ

,
which makes the spectra calculation quite cpu time con-
suming. Since the integration kernel in Eq. 68 is indepen-
dently calculated for di↵erent freeze out hyper-surface el-
ements before the summation, it is a perfect job to fit in
GPU parallel computing. If the Cooper-Frye integration
is only needed to perform once for all the hyper-surface,

Figure 12. Parallel reduction used on GPU to compute the
summation of particle spectra from millions of freeze-out
hyper-surface elements.

it can be done e↵ectively using the two step parallel re-
duction algorithm as shown in from Nvidia and AMD
SDK. In reality we need to do hyper-surface integration
308⇥41⇥15⇥48 times, it is quite slow to load each hyper-
surface element from global memory to private memory
so many times. In order to reduce the global memory
access, we share the hyper-surface elements in one work
group for multiple (pid, Y, p

T

,�) combinations. The cal-
culating time for 300 resonances is reduced from 8 hours
on a single core CPU to 3 minutes on the modern GPUs
like Nvidia K20 and AMD firepro S9150.
The second method is Monte Carlo sampling based on

Eq. 68. This method is similar to physical process and
the sampled particles can be redirected to hadron cascade
models like UrQMD, JAM and SMASH to simulate the
scattering and decays of hadron resonances. As a base-
line, we force the sampled resonances to decay to stable
particles immidiately after they are produced. Compar-
ing with this baseline one can distinguish the e↵ect of
hadronic rescaterring from resonance decay.
Since the particle number is Lorentz invariant, we can

sample particle in the comoving frame of fluid, then do
Lorentz boost according to the fluid velocity uµ. The
total number of hadrons produced from the freeze-out
hyper-surface is N = n ⇥ u · d⌃, where u · d⌃ is the in-
variant volume and n =

P
i

n
i

is the thermal density of
all hadrons in the co-moving frame. For systems without
bulk viscosity and net charge current (net baryon, net
electric charge or net strangeness), the thermal density
of hadron type i is fixed for one given freeze-out tem-
perature. In this case, the thermal densities n

i

for all
hadron species are computed in prior and tabulated for
e�ciency. While for systems with non-zero net charge
current and bulk viscosity, the thermal densities are dif-
ferent for hyper-surface elements that have di↵erent net
charge and bulk viscosity. In that case, the thermal den-
sity n

i

must be computed locally for each hyper-surface

where

LongGang Pang Identifying QCD transition using deep learning

Training dataset

22

6

containing viscous corrections controlled by the Israel-Stewart equations, see [17, 18] for

reviews. In order to close the hydrodynamic equations, one must supply the EOS of the

medium as a crucial input. Therefore, the nature of the QCD transition is a↵ecting the

hydrodynamic evolution and consequently the final ⇢(p
T

,�), which can be obtained from

the Cooper-Frye formula for particle i

⇢(p
T

,�) ⌘ dN

i

dY p

T

dp

T

d�
= g

i

Z

�

p

µ

d�

µ

f

i

, (1)

where N

i

is the particle number density, Y is the rapidity, g
i

is the degeneracy, d�
µ

is the

freeze-out hypersurface element, f
i

is the thermal distribution. In the following, we employ

the lattice-EOS parametrization [24] (dubbed as EOSL) for the crossover transition and

Maxwell construction [25] (dubbed as EOSQ) for the first-order phase transition.

The training dataset of ⇢(p
T

,�) (labelled with either EOSL or EOSQ) is generated by

the second-order event-by-event hydrodynamic package CLVisc [22, 23] with the fluctuating

AMPT initial condition [35]. We generate directly from the simulation 24018 ⇢(p
T

,�) for

di↵erent types of collisions. We then double the amount of the training dataset by label-

preserving left-right flipping along the � direction. We randomly select 10% of all the

⇢(p
T

,�) for validation and use the rest for training. In Tab. I we list the details of the

training dataset.

TRAINING ⌘/s = 0 ⌘/s = 0.08

DATASET EOSL EOSQ EOSL EOSQ

Au-Au
p

s

NN

= 200GeV 7935 5828 500 500

Pb-Pb
p

s

NN

= 2.76 TeV 5467 3328 500 500

TABLE I. Training dataset: numbers of ⇢(p
T

, �) generated by the CLVisc hydrodynamic package

with the AMPT initial condition in the centrality range 0 � 60%. ⌘/s is ratio of shear viscosity

and entropy density. ⌧0 = 0.4 fm for the Au-Au collisions and ⌧0 = 0.2 fm for the Pb-Pb collisions.

The testing dataset contains two groups of samples. In the first group, we generate 2445

⇢(p
T

,�) using the second-order event-by-event hydrodynamic package iEBE-VISHNU [26]

with the MC-Glauber initial condition. In the second group, we generate 8917 ⇢(p
T

,�) using

the CLVisc package with the IP-Glasma-like initial condition [36, 37]. In Tab. II we list the

details of the testing dataset.

• CLVisc + AMPT initial condition + GPUs on GSI-
GreenCube = (~22000 events, doubled by left-right
flipping, 10% for validation).

• is 0.4 fm for Au+Au and 0.2 fm for Pb+Pb collisions

• Tfrz=0.137 GeV

⌧0

⇢(pT ,�) for charged pions at mid-rapidity

LongGang Pang Identifying QCD transition using deep learning

Testing dataset

23

• iEBE-VISHNU: another viscous hydro with different numerical solver
for partial differential equations and different initial condition

• is 0.6 fm for all the testing dataset.

• Tfrz in [0.11GeV, 0.14 GeV] for iEBE-VISHNU

⌧0

iEBE-VISHNU: C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, Comput. Phys. Commun. 199, 61 (2016)

5

TRAINING ⌘/s = 0 ⌘/s = 0.08

DATASET EOSL EOSQ EOSL EOSQ

Au-Au
p

s

NN

= 200GeV 7435 5328 500 500

Pb-Pb
p

s

NN

= 2.76 TeV 4967 2828 500 500

TABLE I. Training dataset: numbers of ⇢(p
T

, �) generated by the CLVisc hydrodynamic package

with the AMPT initial conditions in the centrality range 0 � 60%. ⌘/s is ratio of shear viscosity

to entropy density. ⌧0 = 0.4 fm for the Au-Au collisions and ⌧0 = 0.2 fm for the Pb-Pb collisions.

The freeze-out temperature is set to be 137 MeV.

compared to training dataset. The details are listed in Tab. II. Note that all the training

and testing ⇢(p
T

,�) are preprocessed by ⇢

0 = ⇢/⇢

max

� 0.5 to normalize the input data.

TESTING DATASET GROUP 1 : iEBE-VISHNU + MC-Glauber

Centrality: ⌘/s 2 [0, 0.05] ⌘/s 2 (0.05, 0.10] ⌘/s = (0.10, 0.16]

10-60% EOSL EOSQ EOSL EOSQ EOSL EOSQ

Au-Au
p

s

NN

= 200 GeV 650 850 900 750 200 950

Pb-Pb
p

s

NN

= 2.76 TeV 500 650 600 644 499 150

TESTING DATASET GROUP 2 : CLVisc + IP-Glasma

Au-Au
p

s

NN

= 200 GeV EOSL EOSQ

b<⇠8 fm & ⌘/s = 0 4165 4752

TABLE II. Testing dataset: numbers of ⇢(p
T

, �) generated by the CLVisc and iEBE-VISHNU

hydrodynamic packages with di↵erent initial conditions. ⌘/s is ratio of shear viscosity and entropy

density. b is the impact parameter. ⌧0 = 0.6 fm for all the collisions. In iEBE-VISHNU simulations,

the freeze-out temperature is varied in the range [115, 142] MeV. In CLVisc simulations, the freeze-

out temperature is set to be 137MeV.

B. The existence of physical encoders and neural-network decoder

After training and validating the network, it is tested on the testing set of ⇢(p
T

,�) events.

As shown in Tab. III, high accuracies – on average >⇠ 95% – are achieved for both groups

LongGang Pang Identifying QCD transition using deep learning

First attempt with fully connected neural network

24

Overfit to the training dataset! Does not work for testing dataset.

LongGang Pang Identifying QCD transition using deep learning

CNN architecture for EoS-meter

25

LongGang Pang Identifying QCD transition using deep learning

Prediction Accuracy & Uncertainty in 10-fold cross validation

26

LongGang Pang Identifying QCD transition using deep learning

Prediction Difference Analysis

27

Published as a conference paper at ICLR 2017

VISUALIZING DEEP NEURAL NETWORK DECISIONS:
PREDICTION DIFFERENCE ANALYSIS

Luisa M Zintgraf1,3, Taco S Cohen1, Tameem Adel1, Max Welling1,2
1University of Amsterdam, 2Canadian Institute of Advanced Research, 3Vrije Universiteit Brussel
{lmzintgraf,tameem.hesham}@gmail.com, {t.s.cohen, m.welling}@uva.nl

ABSTRACT

This article presents the prediction difference analysis method for visualizing the
response of a deep neural network to a specific input. When classifying images,
the method highlights areas in a given input image that provide evidence for or
against a certain class. It overcomes several shortcoming of previous methods and
provides great additional insight into the decision making process of classifiers.
Making neural network decisions interpretable through visualization is important
both to improve models and to accelerate the adoption of black-box classifiers in
application areas such as medicine. We illustrate the method in experiments on
natural images (ImageNet data), as well as medical images (MRI brain scans).

1 INTRODUCTION

Over the last few years, deep neural networks (DNNs) have emerged as the method of choice for
perceptual tasks such as speech recognition and image classification. In essence, a DNN is a highly
complex non-linear function, which makes it hard to understand how a particular classification comes
about. This lack of transparency is a significant impediment to the adoption of deep learning in areas
of industry, government and healthcare where the cost of errors is high.

In order to realize the societal promise of deep learning - e.g., through self-driving cars or personalized
medicine - it is imperative that classifiers learn to explain their decisions, whether it is in the lab, the
clinic, or the courtroom. In scientific applications, a better understanding of the complex dependencies
learned by deep networks could lead to new insights and theories in poorly understood domains.

In this paper, we present a new, probabilistically sound methodology for explaining classification
decisions made by deep neural networks. The method can be used to produce a saliency map for each
(instance, node) pair that highlights the parts (features) of the input that constitute most evidence for
or against the activation of the given (internal or output) node. See figure 1 for an example.

In the following two sections, we review related work and then present our approach. In section 4 we
provide several demonstrations of our technique for deep convolutional neural networks (DCNNs)
trained on ImageNet data, and further how the method can be applied when classifying MRI brain
scans of HIV patients with neurodegenerative disease.

Figure 1: Example of our visualization method: explains why the DCNN (GoogLeNet) predicts "cockatoo".
Shown is the evidence for (red) and against (blue) the prediction. We see that the facial features of the cockatoo
are most supportive for the decision, and parts of the body seem to constitute evidence against it. In fact, the
classifier most likely considers them evidence for the second-highest scoring class, white wolf.

1

Published as a conference paper at ICLR 2017

Figure 3: Visualization of the effects of marginal versus conditional sampling using the GoogLeNet
classifier. The classifier makes correct predictions (ostrich and saxophone), and we show the evidence for (red)
and against (blue) this decision at the output layer. We can see that conditional sampling gives more targeted
explanations compared to marginal sampling. Also, marginal sampling assigns too much importance on pixels
that are easily predictable conditioned on their neighboring pixels.

Figure 4: Visualization of how different window sizes influence the visualization result. We used the
conditional sampling method and the AlexNet classifier with l = k + 4 and varying k. We can see that even
when removing single pixels (k = 1), this has a noticeable effect on the classifier and more important pixels get
a higher score. By increasing the window size we can get a more easily interpretable, smooth result until the
image gets blurry for very large window sizes.

We start this section by demonstrating our proposed improvements (sections 3.1 - 3.3).

Marginal vs Conditional Sampling

Figure 3 shows visualizations of the spatial support for the highest scoring class, using marginal
and conditional sampling (with k = 10 and l = 14). We can see that conditional sampling leads
to results that are more refined in the sense that they concentrate more around the object. We can
also see that marginal sampling leads to pixels being declared as important that are very easily
predictable conditioned on their neighboring pixels (like in the saxophone example). Throughout our
experiments, we have found that conditional sampling tends to give more specific and fine-grained
results than marginal sampling. For the rest of our experiments, we therefore show results using
conditional sampling only.

Multivariate Analysis

For ImageNet data, we have observed that setting k = 10 gives a good trade-off between sharp results
and a smooth appearance. Figure 4 shows how different window sizes influence the resolution of the
visualization. Surprisingly, removing only one pixel does have a measurable effect on the prediction,
and the largest effect comes from sensitive pixels. We expected that removing only one pixel does
not have any effect on the classification outcome, but apparently the classifier is sensitive even to
these small changes. However when using such a small window size, it is difficult to make sense of
the sign information in the visualization. If we want to get a good impression of which parts in the
image are evidence for/against a class, it is therefore better to use larger windows. If k is chosen too
large however, the results tend to get blurry. Note that these results are not just simple averages of
one another, but a multivariate approach is indeed necessary to observe the presented results.

Deep Visualization of Hidden Network Layers

Our third main contribution is the extension of the method to neural networks; to understand the role
of hidden layers in a DNN. Figure 5 shows how different feature maps in three different layers of the
GoogLeNet react to the input of a tabby cat (see figure 6, middle image). For each feature map in a
convolutional layer, we first compute the relevance of the input image for each hidden unit in that
map. To estimate what the feature map as a whole is doing, we show the average of the relevance
vectors over all units in that feature map. The first convolutional layer works with different types of
simple image filters (e.g., edge detectors), and what we see is which parts of the input image respond

5

Published as a conference paper at ICLR 2017

Figure 2: Simple illustration of the sampling procedure in algorithm 1. Given the input image x, we select
every possible patch xw (in a sliding window fashion) of size k ⇥ k and place a larger patch x̂w of size l ⇥ l

around it. We can then conditionally sample xw by conditioning on the surrounding patch x̂w.

Algorithm 1 Evaluating the prediction difference using conditional and multivariate sampling
Input: classifier with outputs p(c|x), input image x of size n⇥ n, inner patch size k, outer patch
size l > k, class of interest c, probabilistic model over patches of size l ⇥ l, number of samples S
Initialization: WE = zeros(n*n), counts = zeros(n*n)
for every patch x

w

of size k ⇥ k in x do
x

0
= copy(x)

sum
w

= 0

define patch ˆ

x

w

of size l ⇥ l that contains x
w

for s = 1 to S do
x

0
w

 x

w

sampled from p(x
w

|ˆx
w

\x
w

)

sum
w

+= p(c|x0
) . evaluate classifier

end for
p(c|x\x

w

) := sum
w

/S
WE[coordinates of x

w

] += log2(odds(c|x))� log2(odds(c|x\x
w

))

counts[coordinates of x
w

] += 1

end for
Output: WE / counts . point-wise division

where odds(c|x) = p(c|x)/(1 � p(c|x)). To avoid problems with zero probabilities, Laplace
correction p (pN + 1)/(N +K) is used, where N is the number of training instances and K the
number of classes.

The method produces a relevance vector (WE
i

)

i=1...m (m being the number of features) of the same
size as the input, which reflects the relative importance of all features. A large prediction difference
means that the feature contributed substantially to the classification, whereas a small difference
indicates that the feature was not important for the decision. A positive value WE

i

means that the
feature has contributed evidence for the class of interest: removing it would decrease the confidence
of the classifier in the given class. A negative value on the other hand indicates that the feature
displays evidence against the class: removing it also removes potentially conflicting or irritating
information and the classifier becomes more certain in the investigated class.

3.1 CONDITIONAL SAMPLING

In equation (3), the conditional probability p(x
i

|x\i) of a feature x
i

is approximated using the
marginal distribution p(x

i

). This is a very crude approximation. In images for example, a pixel’s
value is highly dependent on other pixels. We propose a much more accurate approximation, based
on the following two observations: a pixel depends most strongly on a small neighborhood around it,
and the conditional of a pixel given its neighborhood does not depend on the position of the pixel in
the image. For a pixel x

i

, we can therefore find a patch ˆ

x

i

of size l⇥ l that contains x
i

, and condition
on the remaining pixels in that patch:

p(x
i

|x\i) ⇡ p(x
i

|ˆx\i) . (4)

This greatly improves the approximation while remaining completely tractable.

For a feature to become relevant when using conditional sampling, it now has to satisfy two conditions:
being relevant to predict the class of interest, and be hard to predict from the neighboring pixels.
Relative to the marginal method, we therefore downweight the pixels that can easily be predicted and
are thus redundant in this sense.

3

Prediction difference by marginally or conditionally sampling
the value of one feature from mixed events.

LongGang Pang Identifying QCD transition using deep learning

Importance map for testing dataset

28

• Importance regions are different for different testing datasets

• eta/s introduces a small difference

GROUP 1 GROUP 2

LongGang Pang Identifying QCD transition using deep learning

Summary and Outlook

29

• We firmly demonstrate that the “encoders” from QCD transition
onto the spectra do exist.

• Deep CNN provides a powerful “decoder” to extract the QCD
transition from final spectra (regardless the initial fluctuations).

• Prediction difference analysis highlights the most relevant features
for classification.

OutLook

• Extend the model to work with exp. data

• Extract other parameters like temperature dependent shear
viscosity or other physical properties.

