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The Standard Model of particle physics
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The Standard Model of particle physics

May 2017 CMS Preliminary

7 TeV CMS measurement (L< 5.0 fb")
8 TeV CMS measurement (L< 19.6 fb™")
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The Standard Model of particle physics
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The Standard Model of particle physics

The Standard Model Lagrangian is determined by symmetries

» space-time symmetry: global Poincaré-symmetry

» internal symmetries: local SU(n) gauge symmetries

Lsm = —%F:VFQW + I@/_)W gauge sector
+ |DMH|2 — V(H) EWSB sector
+YiNjpiH + h.c. flavour sector

...including only the operators of lowest dimension
and ignoring the strong CP-problem (see lectures by Andrew Cohen).



QED as a gauge theory

v

v

Quantum Chromodynamics

v

Breaking gauge symmetries:

the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

v

Exploring electroweak symmetry breaking at the LHC
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The Dirac equation

(770 = myp(x) = 0

“A great deal more was hidden in the Dirac equation than the author had expected
when he wrote it down in 1928. Dirac himself remarked in one of his talks that his

equation was more intelligent than its author.” (Weisskopf on Dirac)

[We use natural units: ¢ = fi = 1, so that [mass] = [length] =} = [time] ~* = (Giga) electron volt]
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The Dirac equation

(770 = myp(x) = 0

“A great deal more was hidden in the Dirac equation than the author had expected
when he wrote it down in 1928. Dirac himself remarked in one of his talks that his

equation was more intelligent than its author.” (Weisskopf on Dirac)

[We use natural units: ¢ = fi = 1, so that [mass] = [length] =} = [time] ~* = (Giga) electron volt]
What would you do to reconcile quantum theory and special relativity:

i%qﬁ:Hqﬁ and E?=p5"+m*?
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The Dirac equation

(770 = myp(x) = 0

“A great deal more was hidden in the Dirac equation than the author had expected
when he wrote it down in 1928. Dirac himself remarked in one of his talks that his

equation was more intelligent than its author.” (Weisskopf on Dirac)

[We use natural units: ¢ = fi = 1, so that [mass] = [length] =} = [time] ~* = (Giga) electron volt]
What would you do to reconcile quantum theory and special relativity:

.0, 2 25

laqb—Hqﬁ and E°=p +m°7

Iterate the Schrddinger equation to arrive at

0\’ R, 22 2
(i) o= tHo= (T4 m
or (O+m’)p=0

where 0 = §?/0t* — V2.

8/18



Dirac was not satisfied with the Klein-Gordon equation (] + m?)¢$ = 0 since it
contains

» solutions with negative energy E < 0;

» a second order derivative in time, and can thus lead to negative
probability densities |¢|*> < 0.
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Dirac was not satisfied with the Klein-Gordon equation (] + m?)¢$ = 0 since it
contains

» solutions with negative energy E < 0;
> a second order derivative in time, and can thus lead to negative

probability densities |¢|? < 0.

Bohr: " What are you working on Mr. Dirac?”
Dirac:* | am trying to take the square root of something.”

Dirac wanted an equation that is Lorentz covariant and first order in the time
derivative:

8@"? HDlrac/l/J = (O¢1P1 + Q2 P2 + Qa3 p3 + Bm)d) = (_IOé V + 5m)¢
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Dirac was not satisfied with the Klein-Gordon equation (] + m?)¢$ = 0 since it
contains

» solutions with negative energy E < 0;

> a second order derivative in time, and can thus lead to negative
probability densities |¢|? < 0.

Bohr: “ What are you working on Mr. Dirac?”
Dirac:* | am trying to take the square root of something.”

Dirac wanted an equation that is Lorentz covariant and first order in the time
derivative:

.0 I
’aif = Hpiract) = (Q1p1 + qop2 + azps + Bm)y = (—id - V + fm)y

Iterating the equation on both sides yields

E%

2
(,—%) ¥ = (—id@-V + Bm)(—i&@ ¥ + Bm)p

(~a' V'V~ (el + o BymV + B )
(p* + m*)p = (=V'V' + m)p.
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The «; and 8 must satisfy

ajoj + ajap = 25,‘1‘
Bai+aif = 0
p =1

so they cannot be numbers.

Dirac proposed that the a; and 3 are 4 x 4 matrices, and that ¢ is a
4-component column vector, known as Dirac spinor.
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so they cannot be numbers.

Dirac proposed that the a; and 3 are 4 x 4 matrices, and that ¢ is a
4-component column vector, known as Dirac spinor.

) (3 2)

One choice of matrices is

. (0
a=| 2
o

where & are the Pauli matrices.

o

10/18



The «; and 8 must satisfy

ajoj + ajap = 25,‘1‘
Bai+aif = 0
p =1

so they cannot be numbers.

Dirac proposed that the a; and 3 are 4 x 4 matrices, and that ¢ is a
4-component column vector, known as Dirac spinor.

) (3 2)

The Dirac spinor describes particles and antiparticles with spin 1/2:

One choice of matrices is

. (0
a=| 2
o

where & are the Pauli matrices.

o
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There is a more compact way to write the Dirac equation.

Define the y-matrices

=8 and §=8a
so that
pv

(A= A =2g
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There is a more compact way to write the Dirac equation.

Define the y-matrices

=8 and §=8a

so that
pv

(A= A =2g

With the previous choice of «; and 3 one has

o_ (1 0 S 0
7_(0 71) and 7—(,5

where & are the Pauli matrices.

o Q
~—
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There is a more compact way to write the Dirac equation.

Define the y-matrices
=3 and 7

Ba
so that
{7 =AY A = 28"

With the previous choice of «; and 3 one has

o_ (1 0 S 0
7_(0 71) and 7—(,5

where & are the Pauli matrices.

o Q
~—

Using the y-matrices, the Dirac equation becomes:
(i7"0, — m)p(x) =0 or (i —m)p(x)=0
where we have introduced 8, = 9/0x" = (8/8t, —V) and § = "0,
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The beauty and magic of the Dirac equation

The Dirac equation

(79— m)p(x) =0

v

is form-invariant (covariant) under Lorentz transformations;

v

describes particles with spin 1/2;

v

predicts the correct magnetic moment g = 2;

v

predicts the existence of anti-particles!
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The Dirac Lagrangian

One can construct Lorentz scalars and vectors from Dirac spinors and the
y-matrices, e.g.

o L Yy
Py D ALY

where we have defined ¥ = 1f4°.
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The Dirac Lagrangian

One can construct Lorentz scalars and vectors from Dirac spinors and the
y-matrices, e.g.

v D gy
e N Y

where we have defined ¥ = 1f4°.

Using 1, and 7" one can thus construct a Lorentz covariant Lagrangian
L= (in"0u —m),

which leads to the Dirac equation through the usual Euler-Lagrange equations,
0 oL oL 0 oL oL
— -] -==0 and —(=+"F+— ) - =0.
9% \O(09]0x,.) o Ox \ 9(01p/0x,.) oY

13/18



Gauge transformations: QED

Consider the Lagrangian for a free Dirac field 1):
L= (i —m)p.
The Lagrangian is invariant under a phase transformation of the fermion field:
Ve MY, ey,

where w is a constant (i.e. independent of x).
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Gauge transformations: QED

Consider the Lagrangian for a free Dirac field 1):
L= (i —m)p.
The Lagrangian is invariant under a phase transformation of the fermion field:
Ve MY, ey,

where w is a constant (i.e. independent of x).

The set of numbers e™™ form a group. This particular group is “abelian”
which is to say that any two elements of the group commute:

—iwy _—iw —iwy  —iw
e T2 =27 ™,

This particular group is called U(1), i.e. the group of all unitary 1 x 1 matrices.
(A unitary matrix satisfies UT = U™1.)
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Gauge transformations: QED

Consider the Lagrangian for a free Dirac field 1):
L= (i —m)p.
The Lagrangian is invariant under a phase transformation of the fermion field:
Ve MY, ey,

where w is a constant (i.e. independent of x).

The set of numbers e™™ form a group. This particular group is “abelian”
which is to say that any two elements of the group commute:

—iwy _—iw —iwy  —iw
e T2 =27 ™,

This particular group is called U(1), i.e. the group of all unitary 1 x 1 matrices.
(A unitary matrix satisfies UT = U™1.)

Thus the Dirac Lagrangian is invariant under global U(1) transformations.
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We now require invariance under local U(1) transformations, i.e.
w N e—iw(x)w, a N e[a.:(x)a7

where w(x) now depends on the space-time point.

15/18



We now require invariance under local U(1) transformations, i.e.
w N e—iw(x)w, a N e[u.:(x)a7
where w(x) now depends on the space-time point.

Note that £ = 1) (i4*8, — m) is not invariant under local U(1)
transformations: -
L= L+0L=L +Yy"[0uw(x)],

where we consider infinitesimal transformations

Y= b+ 0 =1 —iw(x)y and P —= P+ 6 = b+ iw(x)P.
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We now require invariance under local U(1) transformations, i.e.
w N e—iw(x)w, a N e[u.:(x)a7
where w(x) now depends on the space-time point.

Note that £ = 1) (i4*8, — m) is not invariant under local U(1)
transformations: -
L= L+0L=L +Yy"[0uw(x)],

where we consider infinitesimal transformations

Y= b+ 0 =1 —iw(x)y and P —= P+ 6 = b+ iw(x)P.

We can restore invariance under local U(1) transformations if we introduce a
vector field A, (x) with the interaction

—epy A,

so that the Lagrangian density becomes

L= (i7" (O + ieAu) — m) .
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The new Lagrangian
L= (i (O + ieAu) — m)

is invariant under local U(1) transformations if we require that

1
Ap = A+ 0AL = AL+ E[auw(x)] .
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The new Lagrangian
L= (i (O + ieAu) — m)

is invariant under local U(1) transformations if we require that

1
Ap = A+ 0AL = AL+ E[Buw(x)] .

We need to add a Lorentz- and gauge invariant kinetic term for the field A,:

1 — . .
L= *ZFWFW + P (i7" (O + ieAy) — m) 1,

where
FMV = 8,,,,/41, — 81,/4” .

[We have fixed the coefficient of the term o F,,, F**" so that we recover the standard form of

Maxwell's equations.]
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The new Lagrangian
L= (i (O + ieAu) — m)

is invariant under local U(1) transformations if we require that

1
Ap = A+ 0AL = AL+ E[Buw(x)] .

We need to add a Lorentz- and gauge invariant kinetic term for the field A,:

1 — . .
L= *ZFWFW + P (i7" (O + ieAy) — m) 1,

where
FMV = 8,,,,/41, — 81,/4” .

[We have fixed the coefficient of the term o F,,, F**" so that we recover the standard form of

Maxwell's equations.]

A mass term for the new field oc m3A, A" is not invariant under gauge
transformations,

2
oL = %A”@Mw(x) £0,

and thus not allowed.
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It is useful to introduce the concept of a “covariant derivative” D,, as
D, =0, +ieA,.
With
Y=+ =9 —iw(x)Y and A, — A, +5A,=A.+ é[@uw(x)]

one finds
Dy = Dutp + 6(Dptp) = Dutp — iw(x)Dutp

so that 1
L= —ZFWF“" + v (iv" Dy — m)yp

is gauge invariant.
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It is useful to introduce the concept of a “covariant derivative” D,, as
D, =0, +ieA,.
With
Y=+ =9 —iw(x)Y and A, — A, +5A,=A.+ é[@uw(x)]

one finds
Dyutp — Dpip + 3(Duyp) = Dpyp — iw(x) Dyt
so that 1
L= —ZFWF“" —|—E(/'7“DH —m)Y

is gauge invariant.
One can express F,, in terms of the covariant derivative:
;

Fuw=——[Du. D] = ... = Ay — DA,
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Gauge transformations: Summary

» The Dirac Lagrangian is invariant under local U(1) transformations
if we add a vector field A, and an interaction —eyy*A, 7.

» The interaction is obtained by replacing the derivative 0,, with the
covariant derivative D, = 0, + ieA,,.

» The gauge-invariant kinetic term for the vector field is oc F,,, F*”,
where F,, < [D,, D,].

> The new vector (gauge) field is massless, since a term o< A, A" is
not gauge-invariant.

» The Lagrangian resulting from local U(1) gauge-invariance is
identical to that of QED.
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