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QED as a gauge theory

v

v

Quantum Chromodynamics

v

Breaking gauge symmetries:

the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

» Exploring electroweak symmetry breaking at the LHC



Spontaneous symmetry breaking

A SU(n) gauge theory
1 o apv | =iy . _Taja j
L= _ZF“”F ) (/’y”(@u +igT°A%) — m)ll o
has massless gauge bosons A

To preserve gauge invariance of the Lagrangian, the A}, transform under gauge
transformations as

a a abc c 1 a
AM - Au —f b AZ(X)LU (X) + E [@LW (X)] 5

and thus a mass term
LD Mz ALA™H

is not gauge invariant.

This is what we want for QED (massless photon) and QCD (massless gluons),

but not for a gauge theory of the weak interactions.



The masses of the electroweak gauge bosons are provided by the mechanism of
spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but
the state of lowest energy is not invariant under gauge transformations.
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The masses of the electroweak gauge bosons are provided by the mechanism of
spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but
the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

V(F) = i°F-F+ \F-7)°

For 1® > 0, the minimum is at

F=0

The potential and the ground state at ¥= 0 are symmetric under rotations.
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The masses of the electroweak gauge bosons are provided by the mechanism of
spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but
the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

V() = 127 7+ A7 7)?

For uQ < 0, the minimum is at

— 2
A=/
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The masses of the electroweak gauge bosons are provided by the mechanism of
spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but
the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

V(F) = p’F- F+ X(F- 7)?

For uQ < 0, the minimum is at

— 2
A=/

The potential is symmetric under rotations, but the ground state (any point

along the circle |F] = y/—p?/2)) is not.
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Let us consider a gauge theory with a complex scalar field ®:
L= (D,®) D' — %FWF’“’ — V(o)
and

V() =~ d + A"

The Lagrangian is invariant under U(1) gauge transformations & — e WM,
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Let us consider a gauge theory with a complex scalar field ®:

E:(Q@YD@—%EWPW—V@)

and 2 4k * 2
V(®) = —p20" + A"

The Lagrangian is invariant under U(1) gauge transformations & — e WM,

The minimum of the potential occurs at

O = © /ﬁ:eie

v
2) V2

where © can take any value from 0 to 2.
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Let us consider a gauge theory with a complex scalar field ®:

E:(Q&YU@—%EWPW—V@)

and 2 4k * 2
V(®) = —p20" + A"

The Lagrangian is invariant under U(1) gauge transformations & — e WM,

The minimum of the potential occurs at

q)_ei@ /vLQ_ e

v
-
where © can take any value from 0 to 2.

The symmetry breaking occurs in the choice made for the value of ©. For any
specific choice of © we have

—i —i o Vv i(©— v e v
O e WP =e L = O WL _ 0L
V2 V2

i.e. the ground state is not invariant under gauge transformations.
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In QFT we would say that the field ® has a non-zero vacuum expectation value:

v

(0][0)

N
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In QFT we would say that the field ® has a non-zero vacuum expectation value:

=75

Let us expand ¢ around the vacuum expectation value,

(0][0)

% *Mew’(x)/v* 1 v x))e'®X/v ~ 1 v x) + io(x

and express the Lagrangian in terms of the fields H and ¢.
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In QFT we would say that the field ® has a non-zero vacuum expectation value:

=75

Let us expand ¢ around the vacuum expectation value,

(0][0)

% *Mew’(x)/v* 1 v x))e 0/ 1 v x) + io(x

and express the Lagrangian in terms of the fields H and ¢.

The potential becomes

u

A
V= @?H + pVAH + ¢°H) + S (H + 6" +2H°¢°) + .

There is a mass term for the field H:
Vo uPH = %W with My =2,

but no mass term for the field ¢.
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In QFT we would say that the field ® has a non-zero vacuum expectation value:

=75

Let us expand ¢ around the vacuum expectation value,

(0][0)

% *Mew’(x)/v* 1 v x))e 0/ 1 v x) + io(x

and express the Lagrangian in terms of the fields H and ¢.

The potential becomes

u

A
V= @?H + pVAH + ¢°H) + S (H + 6" +2H°¢°) + .

There is a mass term for the field H:

VDo PH? = %W with My =V2u,

but no mass term for the field ¢.

Thus ¢ represents a massless particle, called “Goldstone boson”.
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For the kinetic term we find
(D, ®) D" > %auHa“H + %gZVZAuA” + g’vA, A*H .

The gauge boson has acquired a mass term:

1

(D, ®) D*® D %g2v2AHA” = EMiA#A“ with Ma = gv

and there is an interaction between the gauge field and the field H:

(Du®) D ® D g?vA, A" H = gMaA,A"H .
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For the kinetic term we find
(D, ®) D" > %auHa“H + %g2v2AuA” + g’vA, A*H .

The gauge boson has acquired a mass term:

(D, ®) D*® D %gzvaHA” = %I\/I,%A#A“ with Ma = gv
and there is an interaction between the gauge field and the field H:
(D, ®)*D"® > g?vA, A*H = gMaA, A"H .
Note that the Goldstone boson ¢ is unphysical and can be removed from the
Lagrangian by choosing a particular gauge (unitary gauge).
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For the kinetic term we find
(D, ®) D" > %auHa“H + %g2v2AuA” + g’vA, A*H .

The gauge boson has acquired a mass term:

1

(D, ®) D*® D %gzvaHA” = EMiA#A“ with Ma = gv

and there is an interaction between the gauge field and the field H:

(Du®) D ® D g?vA, A" H = gMaA,A"H .

Note that the Goldstone boson ¢ is unphysical and can be removed from the
Lagrangian by choosing a particular gauge (unitary gauge).

Let us count the number of degrees of freedom:
> A complex scalar field ® (2) 4+ a massless gauge boson A, (2) = 4

> A real scalar field H (1) + a massive gauge boson A, (3) = 4

The 2 d.o.f. of the complex field ® correspond to the field H and the
longitudinal component of the massive gauge boson.
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The Standard Model with one family

Empirically we know that the weak interactions violate parity and that the
couplings are of the form vector minus axial-vector (V — A):

E’YHU) - J’Y;/st 9

where v5 = iv%y14243.
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We define left- and right-chiral components of spinor fields as

p=tut e where Yur=2(1F7).

[In the limit where the fermions are massless, chirality becomes helicity, which
is the projection of the spin on the direction of the motions.]



The Standard Model with one family

Empirically we know that the weak interactions violate parity and that the
couplings are of the form vector minus axial-vector (V — A):

E’YHU) - J’Y;/st 9
0.1.2_ 3

where v5 = iy v Yy .

We define left- and right-chiral components of spinor fields as

p=tut e where Yur=2(1F7).

[In the limit where the fermions are massless, chirality becomes helicity, which
is the projection of the spin on the direction of the motions.]

The (v — A) structure implies that only left-chiral fermions participate in the
weak interactions:

E’Y;ﬂ/) - @'YM’YS"b = E’YM(I - 75)1/) = EL”YM"#L .



To write down a gauge invariant Lagrangian for the (electro-)weak interactions,
we have to choose the gauge group. Let us try

5U(2)L X U(l)y .

The SU(2), group has 3 generators, T? = 0,/2, a gauge coupling denoted by
g and three gauge bosons W;. It is called weak isospin.

The U(1) group is not the gauge group of QED, but that of hypercharge Y.
The corresponding coupling and gauge boson are denoted by g’ and B*.
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To write down a gauge invariant Lagrangian for the (electro-)weak interactions,
we have to choose the gauge group. Let us try

5U(2)L X U(l)y .

The SU(2), group has 3 generators, T? = 0,/2, a gauge coupling denoted by
g and three gauge bosons W;. It is called weak isospin.

The U(1) group is not the gauge group of QED, but that of hypercharge Y.
The corresponding coupling and gauge boson are denoted by g’ and B*.

As matter content (for the first family), we have

qLE( Zi );UR;dR;/LE ( ;/L );eR;VR.

The model is constructed such that SU(2), gauge transformations only act on
qL and /L,

_ i aTa _:oaTa
g—q =e“Tq and L=l =T,

while ug, dr, Vg, and er are SU(2). singlets and do not couple to the
corresponding gauge bosons W,:.
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To write down a gauge invariant Lagrangian for the (electro-)weak interactions,
we have to choose the gauge group. Let us try

5U(2)L X U(l)y .

The SU(2), group has 3 generators, T? = 0,/2, a gauge coupling denoted by
g and three gauge bosons W;. It is called weak isospin.

The U(1) group is not the gauge group of QED, but that of hypercharge Y.
The corresponding coupling and gauge boson are denoted by g’ and B*.

As matter content (for the first family), we have

qLE( Zi );UR;dR;/LE ( eVL );eR;VR.

The model is constructed such that SU(2), gauge transformations only act on
qL and /L,

—iw?T? —iw?T?

g —q . =e qo and I >l =e I,

while ug, dr, Vg, and er are SU(2). singlets and do not couple to the
corresponding gauge bosons W,:.

Under U(1)y, the matter fields transform as ¢ — 1)’ = e~ Yvq).
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The Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

We introduce a scalar field which transforms as a doublet under SU(2)., and
which has a potential of the form

V(®) = —1 20" d + Ao D).
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The Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

We introduce a scalar field which transforms as a doublet under SU(2)., and
which has a potential of the form

V(®) = —1 20" d + Ao D).

In a specific gauge (unitary gauge), the field can be written as

q):%(v—gH)

so that
1 g we o Vew, .g 0
Du =5 (8“+’§< VWS W) B vin
and thus

V2

2 1 2 g2v2 +uya—
|DM¢| D) 5(8‘“‘_’) +TW WM + 8

(gWi — g’BM)2

where W = (W) £ W2)/V2.
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Thus the gauge bosons Wj and B, mix, and the physical mass eigenstates are
the linear combinations

Z, = cosO W, —sin0,B,

AL cosf, B, +sinf, Wj

with the weak mixing angle defined by

tané, =

o3 |09,
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Thus the gauge bosons Wj and B, mix, and the physical mass eigenstates are
the linear combinations

Z, = cosO W, —sin0,B,
A cos Oy B, +sind,, Wj

with the weak mixing angle defined by

tané, = g .
g
With these definitions we find
2 1 2 g2V2 +p - g2V2 1 12
|D.®|" D 2(é)uH) + 2 Ww™w, + 8cos? 0. 2, 7" + 0ALA".

We can read off the masses of the gauge bosons,

1 1 gv .
MW—Egv, MZ_ZCOSG'W and My =0.
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Thus the gauge bosons Wj and B, mix, and the physical mass eigenstates are
the linear combinations

Z, = cosO W, —sin0,B,
A cos Oy B, +sind,, Wj

with the weak mixing angle defined by

tanf,, = g
g
With these definitions we find
1 g2v? - g2V
D.®> D (0 H + =W W, + -2 7,7" + 0A,A".
‘u|32(u)+4 “+8C0520W“ + i
We can read off the masses of the gauge bosons,
1 1 gv .
MW—Egv, Mz = 3 cosl. and My =0.

One can show that the quantum numbers of the SU(2)., U(1)y and U(1)em
gauge groups are connected through Q = Y + T2,

12/14



Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

LD mp = m g + mgiy .

However, this term violates the SU(2), gauge symmetry.
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0
v+ H

is gauge invariant.

13/14



Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions
LD mpp = m g + mipgipy .
However, this term violates the SU(2), gauge symmetry.

Fortunately, the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism comes
to rescue. The term

LD —Yeﬂd),-eR + h.c. = —% (PLEL) ( v _ﬁ H ) er + h.c.

is gauge invariant. Thus, we obtain a mass term and an interaction

Ye _ _ e — — Mme
- H = H)ee = —me.ee — ¢ Hee,
ﬁ(v—i— ) (€Ler + €reL) \@(v—i— )ee meee — — = Hee
where I Yev or Y. — V2me _ Mme
T2 TV
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Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

LD mpp = m g + mipgipy .
However, this term violates the SU(2), gauge symmetry.

Fortunately, the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism comes
to rescue. The term

=i Ye . _
LD —Yel Pier + h.c. = _ﬁ (I/LeL) ( ) er + h.c.

0
v+ H
is gauge invariant. Thus, we obtain a mass term and an interaction

Ye e
V2 V2

where I Yev or Y. — V2me _ Mme
T2 TV

(v+ H) (éLer + €rer) = ———=(v + H) €e = —meée—%Hée,

The strength of the interaction between the Higgs particle and the fermions is
proportional to the fermion mass.
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The strength of the interaction between the Higgs particle and other

particles is proportional to the particle mass:

v

=
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