RWIHAACHEN UNIVERSITY

The Standard Model of particle physics

Michael Krämer (RWTH Aachen University)

Forschungsgemeinschaft

Outline

- QED as a gauge theory
- Quantum Chromodynamics
- Breaking gauge symmetries:
the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism
- Exploring electroweak symmetry breaking at the LHC

Spontaneous symmetry breaking

A $S U(n)$ gauge theory

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\bar{\psi}^{i}\left(i \gamma^{\mu}\left(\partial_{\mu}+i g T^{a} A_{\mu}^{a}\right)-m\right)_{i}^{j} \psi_{j}
$$

has massless gauge bosons A_{μ}^{a} :
To preserve gauge invariance of the Lagrangian, the A_{μ}^{a} transform under gauge transformations as

$$
A_{\mu}^{a} \rightarrow A_{\mu}^{a}-f^{a b c} A_{\mu}^{b}(x) \omega^{c}(x)+\frac{1}{g}\left[\partial_{\mu} \omega^{a}(x)\right],
$$

and thus a mass term

$$
\mathcal{L} \supset M_{A}^{2} A_{\mu}^{a} A^{a \mu}
$$

is not gauge invariant.
This is what we want for QED (massless photon) and QCD (massless gluons), but not for a gauge theory of the weak interactions.

The masses of the electroweak gauge bosons are provided by the mechanism of spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but the state of lowest energy is not invariant under gauge transformations.

The masses of the electroweak gauge bosons are provided by the mechanism of spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

$$
V(\vec{r})=\mu^{2} \vec{r} \cdot \vec{r}+\lambda(\vec{r} \cdot \vec{r})^{2}
$$

The masses of the electroweak gauge bosons are provided by the mechanism of spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

$$
V(\vec{r})=\mu^{2} \vec{r} \cdot \vec{r}+\lambda(\vec{r} \cdot \vec{r})^{2}
$$

For $\mu^{2}>0$, the minimum is at

$$
\vec{r}=0
$$

The masses of the electroweak gauge bosons are provided by the mechanism of spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

$$
V(\vec{r})=\mu^{2} \vec{r} \cdot \vec{r}+\lambda(\vec{r} \cdot \vec{r})^{2}
$$

For $\mu^{2}>0$, the minimum is at

$$
\vec{r}=0
$$

The potential and the ground state at $\vec{r}=0$ are symmetric under rotations.

The masses of the electroweak gauge bosons are provided by the mechanism of spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

$$
V(\vec{r})=\mu^{2} \vec{r} \cdot \vec{r}+\lambda(\vec{r} \cdot \vec{r})^{2}
$$

For $\mu^{2}<0$, the minimum is at

$$
|\vec{r}|=\sqrt{\frac{-\mu^{2}}{2 \lambda}}
$$

The masses of the electroweak gauge bosons are provided by the mechanism of spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

$$
V(\vec{r})=\mu^{2} \vec{r} \cdot \vec{r}+\lambda(\vec{r} \cdot \vec{r})^{2}
$$

For $\mu^{2}<0$, the minimum is at

$$
|\vec{r}|=\sqrt{\frac{-\mu^{2}}{2 \lambda}}
$$

The potential is symmetric under rotations, but the ground state (any point along the circle $\left.|\vec{r}|=\sqrt{-\mu^{2} / 2 \lambda}\right)$ is not.

Let us consider a gauge theory with a complex scalar field Φ :

$$
\mathcal{L}=\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-V(\Phi)
$$

and

$$
V(\Phi)=-\mu^{2} \Phi^{*} \Phi+\lambda\left|\Phi^{*} \Phi\right|^{2}
$$

The Lagrangian is invariant under $U(1)$ gauge transformations $\Phi \rightarrow e^{-i \omega(x)} \Phi$.

Let us consider a gauge theory with a complex scalar field Φ :

$$
\mathcal{L}=\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-V(\Phi)
$$

and

$$
V(\Phi)=-\mu^{2} \Phi^{*} \Phi+\lambda\left|\Phi^{*} \Phi\right|^{2}
$$

The Lagrangian is invariant under $U(1)$ gauge transformations $\Phi \rightarrow e^{-i \omega(x)} \Phi$.

The minimum of the potential occurs at

$$
\Phi=e^{i \Theta} \sqrt{\frac{\mu^{2}}{2 \lambda}} \equiv e^{i \Theta} \frac{v}{\sqrt{2}}
$$

where Θ can take any value from 0 to 2π.

Let us consider a gauge theory with a complex scalar field Φ :

$$
\mathcal{L}=\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-V(\Phi)
$$

and

$$
V(\Phi)=-\mu^{2} \Phi^{*} \Phi+\lambda\left|\Phi^{*} \Phi\right|^{2}
$$

The Lagrangian is invariant under $U(1)$ gauge transformations $\Phi \rightarrow e^{-i \omega(x)} \Phi$.

The minimum of the potential occurs at

$$
\Phi=e^{i \Theta} \sqrt{\frac{\mu^{2}}{2 \lambda}} \equiv e^{i \Theta} \frac{v}{\sqrt{2}}
$$

where Θ can take any value from 0 to 2π.

The symmetry breaking occurs in the choice made for the value of Θ. For any specific choice of Θ we have

$$
\Phi \rightarrow e^{-i \omega} \Phi=e^{-i \omega} e^{i \Theta} \frac{v}{\sqrt{2}}=e^{i(\Theta-\omega)} \frac{v}{\sqrt{2}}=e^{i \Theta^{\prime}} \frac{v}{\sqrt{2}}
$$

i.e. the ground state is not invariant under gauge transformations.

In QFT we would say that the field Φ has a non-zero vacuum expectation value:

$$
\langle 0| \Phi|0\rangle=\frac{v}{\sqrt{2}} .
$$

In QFT we would say that the field Φ has a non-zero vacuum expectation value:

$$
\langle 0| \Phi|0\rangle=\frac{v}{\sqrt{2}} .
$$

Let us expand Φ around the vacuum expectation value,

$$
\Phi(x)=\frac{\rho(x)}{\sqrt{2}} e^{i \phi(x) / v}=\frac{1}{\sqrt{2}}(v+H(x)) e^{i \phi(x) / v} \approx \frac{1}{\sqrt{2}}(v+H(x)+i \phi(x)),
$$

and express the Lagrangian in terms of the fields H and ϕ.

In QFT we would say that the field Φ has a non-zero vacuum expectation value:

$$
\langle 0| \Phi|0\rangle=\frac{v}{\sqrt{2}} .
$$

Let us expand Φ around the vacuum expectation value,

$$
\Phi(x)=\frac{\rho(x)}{\sqrt{2}} e^{i \phi(x) / v}=\frac{1}{\sqrt{2}}(v+H(x)) e^{i \phi(x) / v} \approx \frac{1}{\sqrt{2}}(v+H(x)+i \phi(x))
$$

and express the Lagrangian in terms of the fields H and ϕ.
The potential becomes

$$
V=\mu^{2} H^{2}+\mu \sqrt{\lambda}\left(H^{3}+\phi^{2} H\right)+\frac{\lambda}{4}\left(H^{4}+\phi^{4}+2 H^{2} \phi^{2}\right)+\frac{\mu^{4}}{4 \lambda}
$$

There is a mass term for the field H :

$$
V \supset \mu^{2} H^{2} \equiv \frac{M_{H}}{2} H^{2} \quad \text { with } \quad M_{H}=\sqrt{2} \mu
$$

but no mass term for the field ϕ.

In QFT we would say that the field Φ has a non-zero vacuum expectation value:

$$
\langle 0| \Phi|0\rangle=\frac{v}{\sqrt{2}} .
$$

Let us expand Φ around the vacuum expectation value,

$$
\Phi(x)=\frac{\rho(x)}{\sqrt{2}} e^{i \phi(x) / v}=\frac{1}{\sqrt{2}}(v+H(x)) e^{i \phi(x) / v} \approx \frac{1}{\sqrt{2}}(v+H(x)+i \phi(x))
$$

and express the Lagrangian in terms of the fields H and ϕ.
The potential becomes

$$
V=\mu^{2} H^{2}+\mu \sqrt{\lambda}\left(H^{3}+\phi^{2} H\right)+\frac{\lambda}{4}\left(H^{4}+\phi^{4}+2 H^{2} \phi^{2}\right)+\frac{\mu^{4}}{4 \lambda}
$$

There is a mass term for the field H :

$$
V \supset \mu^{2} H^{2} \equiv \frac{M_{H}}{2} H^{2} \quad \text { with } \quad M_{H}=\sqrt{2} \mu
$$

but no mass term for the field ϕ.
Thus ϕ represents a massless particle, called "Goldstone boson".

For the kinetic term we find

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset \frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu}+g^{2} v A_{\mu} A^{\mu} H
$$

The gauge boson has acquired a mass term:

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset \frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu} \equiv \frac{1}{2} M_{A}^{2} A_{\mu} A^{\mu} \quad \text { with } \quad M_{A}=g v
$$

and there is an interaction between the gauge field and the field H :

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset g^{2} v A_{\mu} A^{\mu} H=g M_{A} A_{\mu} A^{\mu} H
$$

For the kinetic term we find

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset \frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu}+g^{2} v A_{\mu} A^{\mu} H
$$

The gauge boson has acquired a mass term:

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset \frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu} \equiv \frac{1}{2} M_{A}^{2} A_{\mu} A^{\mu} \quad \text { with } \quad M_{A}=g v
$$

and there is an interaction between the gauge field and the field H :

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset g^{2} v A_{\mu} A^{\mu} H=g M_{A} A_{\mu} A^{\mu} H
$$

Note that the Goldstone boson ϕ is unphysical and can be removed from the Lagrangian by choosing a particular gauge (unitary gauge).

For the kinetic term we find

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset \frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu}+g^{2} v A_{\mu} A^{\mu} H
$$

The gauge boson has acquired a mass term:

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset \frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu} \equiv \frac{1}{2} M_{A}^{2} A_{\mu} A^{\mu} \quad \text { with } \quad M_{A}=g v
$$

and there is an interaction between the gauge field and the field H :

$$
\left(D_{\mu} \Phi\right)^{*} D^{\mu} \Phi \supset g^{2} v A_{\mu} A^{\mu} H=g M_{A} A_{\mu} A^{\mu} H
$$

Note that the Goldstone boson ϕ is unphysical and can be removed from the Lagrangian by choosing a particular gauge (unitary gauge).

Let us count the number of degrees of freedom:

- A complex scalar field $\Phi(2)+$ a massless gauge boson $A_{\mu}(2)=4$
- A real scalar field $H(1)+$ a massive gauge boson $A_{\mu}(3)=4$

The 2 d.o.f. of the complex field Φ correspond to the field H and the longitudinal component of the massive gauge boson.

The Standard Model with one family

Empirically we know that the weak interactions violate parity and that the couplings are of the form vector minus axial-vector $(V-A)$:

$$
\bar{\psi} \gamma_{\mu} \psi-\bar{\psi} \gamma_{\mu} \gamma_{5} \psi
$$

where $\gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.

The Standard Model with one family

Empirically we know that the weak interactions violate parity and that the couplings are of the form vector minus axial-vector $(V-A)$:

$$
\bar{\psi} \gamma_{\mu} \psi-\bar{\psi} \gamma_{\mu} \gamma_{5} \psi
$$

where $\gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
We define left- and right-chiral components of spinor fields as

$$
\psi=\psi_{L}+\psi_{R} \quad \text { where } \quad \psi_{L / R}=\frac{1}{2}\left(1 \mp \gamma^{5}\right) \psi
$$

[In the limit where the fermions are massless, chirality becomes helicity, which is the projection of the spin on the direction of the motions.]

The Standard Model with one family

Empirically we know that the weak interactions violate parity and that the couplings are of the form vector minus axial-vector $(V-A)$:

$$
\bar{\psi} \gamma_{\mu} \psi-\bar{\psi} \gamma_{\mu} \gamma_{5} \psi
$$

where $\gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
We define left- and right-chiral components of spinor fields as

$$
\psi=\psi_{L}+\psi_{R} \quad \text { where } \quad \psi_{L / R}=\frac{1}{2}\left(1 \mp \gamma^{5}\right) \psi
$$

[In the limit where the fermions are massless, chirality becomes helicity, which is the projection of the spin on the direction of the motions.]

The $(V-A)$ structure implies that only left-chiral fermions participate in the weak interactions:

$$
\bar{\psi} \gamma_{\mu} \psi-\bar{\psi} \gamma_{\mu} \gamma_{5} \psi=\bar{\psi} \gamma_{\mu}\left(1-\gamma_{5}\right) \psi=\bar{\psi}_{L} \gamma_{\mu} \psi_{L}
$$

To write down a gauge invariant Lagrangian for the (electro-)weak interactions, we have to choose the gauge group. Let us try

$$
S U(2)_{L} \times U(1)_{Y} .
$$

The $S U(2)_{\llcorner }$group has 3 generators, $T^{a}=\sigma_{a} / 2$, a gauge coupling denoted by g and three gauge bosons W_{μ}^{a}. It is called weak isospin.
The $U(1)$ group is not the gauge group of QED, but that of hypercharge Y. The corresponding coupling and gauge boson are denoted by g^{\prime} and B^{μ}.

To write down a gauge invariant Lagrangian for the (electro-)weak interactions, we have to choose the gauge group. Let us try

$$
S U(2)_{L} \times U(1)_{Y}
$$

The $S U(2)_{L}$ group has 3 generators, $T^{a}=\sigma_{a} / 2$, a gauge coupling denoted by g and three gauge bosons W_{μ}^{a}. It is called weak isospin.

The $U(1)$ group is not the gauge group of QED, but that of hypercharge Y. The corresponding coupling and gauge boson are denoted by g^{\prime} and B^{μ}.

As matter content (for the first family), we have

$$
q_{L} \equiv\binom{u_{L}}{d_{L}} ; u_{R} ; d_{R} ; I_{L} \equiv\binom{\nu}{e_{L}} ; e_{R} ; \nu_{R}
$$

The model is constructed such that $S U(2)_{L}$ gauge transformations only act on q_{L} and I_{L},

$$
q_{L} \rightarrow q_{L}^{\prime}=e^{-i \omega^{a} T^{a}} q_{L} \quad \text { and } \quad I_{L} \rightarrow I_{L}^{\prime}=e^{-i \omega^{a} T^{a}} I_{L}
$$

while u_{R}, d_{R}, ν_{R}, and e_{R} are $S U(2)_{L}$ singlets and do not couple to the corresponding gauge bosons W_{μ}^{a}.

To write down a gauge invariant Lagrangian for the (electro-)weak interactions, we have to choose the gauge group. Let us try

$$
S U(2)_{L} \times U(1)_{Y}
$$

The $S U(2)_{L}$ group has 3 generators, $T^{a}=\sigma_{a} / 2$, a gauge coupling denoted by g and three gauge bosons W_{μ}^{a}. It is called weak isospin.

The $U(1)$ group is not the gauge group of QED, but that of hypercharge Y. The corresponding coupling and gauge boson are denoted by g^{\prime} and B^{μ}.

As matter content (for the first family), we have

$$
q_{L} \equiv\binom{u_{L}}{d_{L}} ; u_{R} ; d_{R} ; I_{L} \equiv\binom{\nu}{e_{L}} ; e_{R} ; \nu_{R}
$$

The model is constructed such that $S U(2)_{L}$ gauge transformations only act on q_{L} and I_{L},

$$
q_{L} \rightarrow q_{L}^{\prime}=e^{-i \omega^{a} T^{a}} q_{L} \quad \text { and } \quad I_{L} \rightarrow I_{L}^{\prime}=e^{-i \omega^{a} T^{a}} I_{L}
$$

while u_{R}, d_{R}, ν_{R}, and e_{R} are $S U(2)_{L}$ singlets and do not couple to the corresponding gauge bosons W_{μ}^{a}.

Under $U(1)_{Y}$, the matter fields transform as $\psi \rightarrow \psi^{\prime}=e^{-i \omega Y_{\psi}} \psi$.

The Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

We introduce a scalar field which transforms as a doublet under $S U(2)_{L}$, and which has a potential of the form

$$
V(\Phi)=-\mu^{2} \Phi^{*} \Phi+\lambda\left|\Phi^{*} \Phi\right|^{2}
$$

The Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

We introduce a scalar field which transforms as a doublet under $S U(2)_{L}$, and which has a potential of the form

$$
V(\Phi)=-\mu^{2} \Phi^{*} \Phi+\lambda\left|\Phi^{*} \Phi\right|^{2}
$$

In a specific gauge (unitary gauge), the field can be written as

$$
\Phi=\frac{1}{\sqrt{2}}\binom{0}{v+H}
$$

so that

$$
D_{\mu} \Phi=\frac{1}{\sqrt{2}}\left(\partial_{\mu}+i \frac{g}{2}\left(\begin{array}{cc}
W_{\mu}^{3} & \sqrt{2} W_{\mu}^{-} \\
\sqrt{2} W_{\mu}^{+} & -W_{\mu}^{3}
\end{array}\right)+i \frac{g^{\prime}}{2} B_{\mu}\right)\binom{0}{v+H}
$$

The Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

We introduce a scalar field which transforms as a doublet under $S U(2)_{L}$, and which has a potential of the form

$$
V(\Phi)=-\mu^{2} \Phi^{*} \Phi+\lambda\left|\Phi^{*} \Phi\right|^{2}
$$

In a specific gauge (unitary gauge), the field can be written as

$$
\Phi=\frac{1}{\sqrt{2}}\binom{0}{v+H}
$$

so that

$$
D_{\mu} \Phi=\frac{1}{\sqrt{2}}\left(\partial_{\mu}+i \frac{g}{2}\left(\begin{array}{cc}
W_{\mu}^{3} & \sqrt{2} W_{\mu}^{-} \\
\sqrt{2} W_{\mu}^{+} & -W_{\mu}^{3}
\end{array}\right)+i \frac{g^{\prime}}{2} B_{\mu}\right)\binom{0}{v+H}
$$

and thus

$$
\left|D_{\mu} \Phi\right|^{2} \supset \frac{1}{2}\left(\partial_{\mu} H\right)^{2}+\frac{g^{2} v^{2}}{4} W^{+\mu} W_{\mu}^{-}+\frac{v^{2}}{8}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)^{2}
$$

where $W_{\mu}^{ \pm}=\left(W_{\mu}^{1} \pm W_{\mu}^{2}\right) / \sqrt{2}$.

Thus the gauge bosons W_{μ}^{3} and B_{μ} mix, and the physical mass eigenstates are the linear combinations

$$
\begin{aligned}
Z_{\mu} & \equiv \cos \theta_{w} W_{\mu}^{3}-\sin \theta_{w} B_{\mu} \\
A_{\mu} & \equiv \cos \theta_{w} B_{\mu}+\sin \theta_{w} W_{\mu}^{3}
\end{aligned}
$$

with the weak mixing angle defined by

$$
\tan \theta_{w} \equiv \frac{g^{\prime}}{g} .
$$

Thus the gauge bosons W_{μ}^{3} and B_{μ} mix, and the physical mass eigenstates are the linear combinations

$$
\begin{aligned}
Z_{\mu} & \equiv \cos \theta_{w} W_{\mu}^{3}-\sin \theta_{w} B_{\mu} \\
A_{\mu} & \equiv \cos \theta_{w} B_{\mu}+\sin \theta_{w} W_{\mu}^{3}
\end{aligned}
$$

with the weak mixing angle defined by

$$
\tan \theta_{w} \equiv \frac{g^{\prime}}{g}
$$

With these definitions we find

$$
\left|D_{\mu} \Phi\right|^{2} \supset \frac{1}{2}\left(\partial_{\mu} H\right)^{2}+\frac{g^{2} v^{2}}{4} W^{+\mu} W_{\mu}^{-}+\frac{g^{2} v^{2}}{8 \cos ^{2} \theta_{w}} Z_{\mu} Z^{\mu}+0 A_{\mu} A^{\mu}
$$

We can read off the masses of the gauge bosons,

$$
M_{w}=\frac{1}{2} g v, \quad M_{z}=\frac{1}{2} \frac{g v}{\cos \theta_{w}} \quad \text { and } \quad M_{A}=0
$$

Thus the gauge bosons W_{μ}^{3} and B_{μ} mix, and the physical mass eigenstates are the linear combinations

$$
\begin{aligned}
Z_{\mu} & \equiv \cos \theta_{w} W_{\mu}^{3}-\sin \theta_{w} B_{\mu} \\
A_{\mu} & \equiv \cos \theta_{w} B_{\mu}+\sin \theta_{w} W_{\mu}^{3}
\end{aligned}
$$

with the weak mixing angle defined by

$$
\tan \theta_{w} \equiv \frac{g^{\prime}}{g}
$$

With these definitions we find

$$
\left|D_{\mu} \Phi\right|^{2} \supset \frac{1}{2}\left(\partial_{\mu} H\right)^{2}+\frac{g^{2} v^{2}}{4} W^{+\mu} W_{\mu}^{-}+\frac{g^{2} v^{2}}{8 \cos ^{2} \theta_{w}} Z_{\mu} Z^{\mu}+0 A_{\mu} A^{\mu}
$$

We can read off the masses of the gauge bosons,

$$
M_{w}=\frac{1}{2} g v, \quad M_{z}=\frac{1}{2} \frac{g v}{\cos \theta_{w}} \quad \text { and } \quad M_{A}=0
$$

One can show that the quantum numbers of the $S U(2)_{L}, U(1)_{Y}$ and $U(1)_{\text {em }}$ gauge groups are connected through $Q=Y+T^{3}$.

Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

$$
\mathcal{L} \supset m \bar{\psi} \psi=m \bar{\psi}_{L} \psi_{R}+m \bar{\psi}_{R} \psi_{L}
$$

However, this term violates the $S U(2)_{L}$ gauge symmetry.

Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

$$
\mathcal{L} \supset m \bar{\psi} \psi=m \bar{\psi}_{L} \psi_{R}+m \bar{\psi}_{R} \psi_{L}
$$

However, this term violates the $S U(2)_{L}$ gauge symmetry.
Fortunately, the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism comes to rescue.

Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

$$
\mathcal{L} \supset m \bar{\psi} \psi=m \bar{\psi}_{L} \psi_{R}+m \bar{\psi}_{R} \psi_{L}
$$

However, this term violates the $S U(2)_{\perp}$ gauge symmetry.
Fortunately, the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism comes to rescue. The term

$$
\mathcal{L} \supset-Y_{e} \bar{l}_{L}^{i} \Phi_{i} e_{R}+\text { h.c. }=-\frac{Y_{e}}{\sqrt{2}}\left(\bar{\nu}_{L} \bar{e}_{L}\right)\binom{0}{v+H} e_{R}+\text { h.c. }
$$

is gauge invariant.

Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

$$
\mathcal{L} \supset m \bar{\psi} \psi=m \bar{\psi}_{L} \psi_{R}+m \bar{\psi}_{R} \psi_{L} .
$$

However, this term violates the $S U(2)_{L}$ gauge symmetry.
Fortunately, the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism comes to rescue. The term

$$
\mathcal{L} \supset-Y_{e} \bar{l}_{L}^{i} \Phi_{i} e_{R}+\text { h.c. }=-\frac{Y_{e}}{\sqrt{2}}\left(\bar{\nu}_{L} \bar{e}_{L}\right)\binom{0}{v+H} e_{R}+\text { h.c. }
$$

is gauge invariant. Thus, we obtain a mass term and an interaction

$$
-\frac{Y_{e}}{\sqrt{2}}(v+H)\left(\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right)=-\frac{Y_{e}}{\sqrt{2}}(v+H) \bar{e} e=-m_{e} \bar{e} e-\frac{m_{e}}{v} H \bar{e} e
$$

where

$$
m_{e} \equiv \frac{Y_{e} v}{\sqrt{2}} \quad \text { or } \quad Y_{e}=\frac{\sqrt{2} m_{e}}{v}=g \frac{m_{e}}{\sqrt{2} M_{W}}
$$

Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

$$
\mathcal{L} \supset m \bar{\psi} \psi=m \bar{\psi}_{L} \psi_{R}+m \bar{\psi}_{R} \psi_{L} .
$$

However, this term violates the $S U(2)_{\llcorner }$gauge symmetry.
Fortunately, the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism comes to rescue. The term

$$
\mathcal{L} \supset-Y_{e} \bar{I}_{L}^{i} \Phi_{i} e_{R}+\text { h.c. }=-\frac{Y_{e}}{\sqrt{2}}\left(\bar{\nu}_{L} \bar{e}_{L}\right)\binom{0}{v+H} e_{R}+\text { h.c. }
$$

is gauge invariant. Thus, we obtain a mass term and an interaction

$$
-\frac{Y_{e}}{\sqrt{2}}(v+H)\left(\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right)=-\frac{Y_{e}}{\sqrt{2}}(v+H) \bar{e} e=-m_{e} \bar{e} e-\frac{m_{e}}{v} H \bar{e} e,
$$

where

$$
m_{e} \equiv \frac{Y_{e} v}{\sqrt{2}} \quad \text { or } \quad Y_{e}=\frac{\sqrt{2} m_{e}}{v}=g \frac{m_{e}}{\sqrt{2} M_{W}}
$$

The strength of the interaction between the Higgs particle and the fermions is proportional to the fermion mass.

The strength of the interaction between the Higgs particle and other particles is proportional to the particle mass:

