EFT studies of hZ & hhZ production @ the ILC/CLIC the case of contact interactions

Shaouly Bar-Shalom shaouly@physics.technion.ac.il

Based on:

"Contact interactions in Higgs-vector boson associated production at the ILC": Jonthan Cohen (PhD student), SBS, Gad Eilam, PRD2016 (arxiv: 1602.01698)

Physics @ CLIC, CERN, July 2017

Outline

• ee colliders & ee \rightarrow hZ, hhZ: quick notes

• The SMEFT & application to ee \rightarrow hZ, hhZ the $\psi^2 \phi^2 D$ class op's from heavy vector-boson exchanges

• NP(ee \rightarrow hZ, hhZ)_{w2o2D} : expectations @ a 0.5-3 TeV ILC/CLIC

Some extra handles

- Validity of the EFT
- An hZ hhZ correlation
- Summary & outlook

ee colliders: a pathway to precision

Some benchmark expectations for leading BSM scenarios

given the present status of BSM searches, need percent level accuracies to hunt for the tail of potential multi-TeV NP

Physics @ CLIC, CERN, July 2017

$ee \rightarrow hZ$ & hhZ: some basic facts

 $\sigma(E_{cm} \sim 250 \text{ GeV}) \sim O(100 \text{ fb})$ dropping to $O(10 \text{ fb}) \oplus E_{cm} \sim 1 \text{ TeV}$ & to $O(1 \text{ fb}) \oplus E_{cm} \sim 3 \text{ TeV}$ $\sigma(E_{cm} \sim 500 - 1000 \text{ GeV}) \sim O(0.1 \text{ fb})$ dropping to $O(0.01 \text{ fb}) @ E_{cm} \sim 3 \text{ TeV}$

Physics @ CLIC, CERN, July 2017

$ee \rightarrow hZ \& hhZ$: some basic facts

10250

750

1000

√s [GeV]

500

Physics @ CLIC, CERN, July 2017

$ee \rightarrow hZ$ & hhZ: some basic facts

Indeed, both are sensitive to a variety of BSM scenarios but: sensitivity to multi-TeV NP requires TeV-scale energies where CSX's are small

 \Rightarrow needs an O(1000 fb⁻¹) luminosity

Physics @ CLIC, CERN, July 2017

The SMEFT

perhaps the only not-speculated NP framework by definition ...

Physics @ CLIC, CERN, July 2017

The "art" of EFT in a nutshell:

<u>Conventional practice</u>: physics at $E \leq \Lambda$ is described by

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{n=5}^{\infty} \frac{1}{\Lambda^{(n-4)}} \sum_{i} f_i^{(n)} \mathcal{O}_i^{(n)}$$

 \sim

 \checkmark "light fields" [$\bigcirc E \leq \Lambda$] = SM fields

✓ Gauge-symmetry [@ $E \leq \Lambda$] = SM: SU(3)×SU(2)×U(1)

 ✓ Underlying NP (\$\ophi_{heavy}\$) is weakly coupled, renormalizable, obeys gauge-invariance & preserves symmetries of the known dynamics (SM) (useful for classifying the higher dim operators)

Physics @ CLIC, CERN, July 2017

The "art" of EFT in a nutshell:

on top of that:

use 3 more guiding principles which further simplify/reduce the # of relevant operators (we don't know the precise form of the underlying heavy physics ⇒ ambiguities in selecting relevant operators ...): Arzt, Einhorn & Wudka, Nucl.Phys. B433 (1995), 41; Einhorn & Wudka, Nucl.Phys. B876 (2013) 556

1. Equations of Motion (EoM): an "equivalence theorem"

2. Integration by Parts (IbP): dismiss surface terms

3. Loop Classification of operators: loop-gen. (LG) vs potentially tree-level gen. (PTG) operators

Many operators can be constructed under these conditions, O(50) @ dim 6 but only several of them directly apply to hZ & hhZ prod ...

Physics @ CLIC, CERN, July 2017

The	GIMR	(Warsaw)	basis	(Grzadkowski et at.,	arxiv:1008.4884)
-----	------	----------	-------	----------------------	------------------

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$Q_W \qquad \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$		$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^\dagger i \overleftrightarrow{D}^I_\mu \varphi) (\bar{l}_p \tau^I \gamma^\mu l_r)$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

+ 4 fermion interactions ...

Physics @ CLIC, CERN, July 2017

The SMEFT & heavy vector-boson exchanges:

the $\psi^2 \phi^2 D$ class operators

The	GIMR (Warso					
	X^3	φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2 \qquad \qquad \psi^2 X \varphi$			$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$w^2 \omega^2 D$ on's:
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	heavy vector-boson
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	exchanges
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	(singiets à tripiets)
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi v d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

+ 4 fermion interactions ...

Physics @ CLIC, CERN, July 2017

generate IIhZ & IIhhZ contact terms and therefore expected to give the dominant higher-dim. EFT effect in ee →hZ,hhZ

For practical reasons use HEL package (FeynRules) \rightarrow UFO file for MG5 ...

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \overline{c}_i \mathcal{O}_i \equiv \mathcal{L}_{SM} + \mathcal{L}_{SILH} + \mathcal{L}_{F_1} + \mathcal{L}_{F_2} + \mathcal{L}_G$$
 Alloul, Fuk, JHEP2014 (arxiv: 1310.5150)

$$\begin{aligned} \mathcal{L}_{F_{1}} &= \frac{i\overline{c}_{HQ}}{v^{2}} \left[\overline{Q}_{L} \gamma^{\mu} Q_{L} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{4i\overline{c}_{HQ}'}{v^{2}} \left[\overline{Q}_{L} \gamma^{\mu} T_{2k} Q_{L} \right] \left[\Phi^{\dagger} T_{2}^{k} \overleftrightarrow{D}_{\mu} \Phi \right] \\ &+ \frac{i\overline{c}_{Hu}}{v^{2}} \left[\overline{u}_{R} \gamma^{\mu} u_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{i\overline{c}_{Hd}}{v^{2}} \left[\overline{d}_{R} \gamma^{\mu} d_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] \\ &- \left[\frac{i\overline{c}_{Hud}}{v^{2}} \left[\overline{u}_{R} \gamma^{\mu} d_{R} \right] \left[\Phi \cdot \overleftrightarrow{D}_{\mu} \Phi \right] + h.c. \right] \\ &+ \frac{i\overline{c}_{HL}}{v^{2}} \left[\overline{L}_{L} \gamma^{\mu} L_{L} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{4i\overline{c}_{HL}'}{v^{2}} \left[\overline{L}_{L} \gamma^{\mu} T_{2k} L_{L} \right] \left[\Phi^{\dagger} T_{2}^{k} \overleftrightarrow{D}_{\mu} \Phi \right] \\ &+ \frac{i\overline{c}_{He}}{v^{2}} \left[\overline{e}_{R} \gamma^{\mu} e_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] \end{aligned}$$

Physics @ CLIC, CERN, July 2017

For practical reasons use HEL package (FeynRules) \rightarrow UFO file for MG5 ...

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \overline{c}_i \mathcal{O}_i \equiv \mathcal{L}_{SM} + \mathcal{L}_{SILH} + \mathcal{L}_{F_1} + \mathcal{L}_{F_2} + \mathcal{L}_G$$
 Alloul, Fuk, JHEP2014 (arxiv: 1310.5150)

$$\begin{aligned} \mathcal{L}_{F_{1}} &= \frac{i\overline{c}_{HQ}}{v^{2}} \left[\overline{Q}_{L} \gamma^{\mu} Q_{L} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{4i\overline{c}_{HQ}'}{v^{2}} \left[\overline{Q}_{L} \gamma^{\mu} T_{2k} Q_{L} \right] \left[\Phi^{\dagger} T_{2}^{k} \overleftrightarrow{D}_{\mu} \Phi \right] \\ &+ \frac{i\overline{c}_{Hu}}{v^{2}} \left[\overline{u}_{R} \gamma^{\mu} u_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{i\overline{c}_{Hd}}{v^{2}} \left[\overline{d}_{R} \gamma^{\mu} d_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] \\ &- \left[\frac{i\overline{c}_{Hud}}{v^{2}} \left[\overline{u}_{R} \gamma^{\mu} d_{R} \right] \left[\Phi^{\bullet} \overleftrightarrow{D}_{\mu} \Phi \right] + h.c. \right] \\ &+ \frac{i\overline{c}_{HL}}{v^{2}} \left[\overline{L}_{L} \gamma^{\mu} L_{L} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{4i\overline{c}_{HL}'}{v^{2}} \left[\overline{L}_{L} \gamma^{\mu} T_{2k} L_{L} \right] \left[\Phi^{\dagger} T_{2}^{k} \overleftrightarrow{D}_{\mu} \Phi \right] \\ &+ \frac{i\overline{c}_{He}}{v^{2}} \left[\overline{e}_{R} \gamma^{\mu} e_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] \end{aligned}$$

leptonic $\psi^2\phi^2D$ op's

Physics @ CLIC, CERN, July 2017

For practical reasons use HEL package (FeynRules) \rightarrow UFO file for MG5 ...

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \overline{c}_i \mathcal{O}_i \equiv \mathcal{L}_{SM} + \mathcal{L}_{SILH} + \mathcal{L}_{F_1} + \mathcal{L}_{F_2} + \mathcal{L}_G$$
 Alloul, Fuk, JHEP2014 (arxiv: 1310.5150)

$$\mathcal{L}_{F_{1}} = \frac{i\overline{c}_{HQ}}{v^{2}} \left[\overline{Q}_{L} \gamma^{\mu} Q_{L} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{4i\overline{c}'_{HQ}}{v^{2}} \left[\overline{Q}_{L} \gamma^{\mu} T_{2k} Q_{L} \right] \left[\Phi^{\dagger} T_{2}^{k} \overleftrightarrow{D}_{\mu} \Phi \right]$$

$$+ \frac{i\overline{c}_{Hu}}{v^{2}} \left[\overline{u}_{R} \gamma^{\mu} u_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{i\overline{c}_{Hd}}{v^{2}} \left[\overline{d}_{R} \gamma^{\mu} d_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right]$$

$$- \left[\frac{i\overline{c}_{Hud}}{v^{2}} \left[\overline{u}_{R} \gamma^{\mu} d_{R} \right] \left[\Phi^{\bullet} \overleftrightarrow{D}_{\mu} \Phi \right] + h.c. \right]$$

$$+ \frac{i\overline{c}_{HL}}{v^{2}} \left[\overline{L}_{L} \gamma^{\mu} L_{L} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] + \frac{4i\overline{c}'_{HL}}{v^{2}} \left[\overline{L}_{L} \gamma^{\mu} T_{2k} L_{L} \right] \left[\Phi^{\dagger} T_{2}^{k} \overleftarrow{D}_{\mu} \Phi \right]$$

$$+ \frac{i\overline{c}_{He}}{v^{2}} \left[\overline{e}_{R} \gamma^{\mu} e_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right]$$

$$+ \frac{i\overline{c}_{He}}{v^{2}} \left[\overline{e}_{R} \gamma^{\mu} e_{R} \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right]$$

"mapping" HEL \rightarrow GIMR: $\overline{c}_i = \frac{v^2}{\Lambda^2} f_i$ $f_i \sim O(1) \dots$

Physics @ CLIC, CERN, July 2017

Shaouly Bar-Shalom

14

Constraints: e.g., Contino et al., JHEP2013 (arxiv: 1303.3876)

• $\psi^2 \varphi^2 D$ class operators modify couplings of Z to quarks and leptons

$$\frac{\delta g_{L\psi}}{g_{L\psi}} = \frac{1}{2} \frac{(-\bar{c}_{H\Psi} + 2\,T_{3L}\,\bar{c}'_{H\Psi})}{T_{3L} - Q\,\sin^2\!\theta_W} \,, \qquad \frac{\delta g_{R\psi}}{g_{R\psi}} = \frac{1}{2}\,\frac{\bar{c}_{H\psi}}{Q\,\sin^2\!\theta_W}$$

Tightly constrained by Z-pole measurements at LEP1
Independent of Higgs physics

 $-0.0003 < \overline{c}_{HL} < 0.002$

$$\begin{array}{c} \Lambda \gtrsim 14 \, TeV \\ \textbf{f}_i = -1 \end{array} \begin{array}{c} \Lambda \gtrsim 5.5 \, TeV \\ \textbf{f}_i = 1 \end{array}$$

Physics @ CLIC, CERN, July 2017

Shaouly Bar-Shalom

use PEWD $-0.0009 < \overline{c}_{He} < 0.003,$ $-0.0003 < \overline{c}_{HL} + \overline{c}'_{HL} < 0.002$ $-0.002 < \overline{c}_{HL} - \overline{c}'_{HL} < 0.004$

$e^+e^- \rightarrow hZ$, $hhZ \& the \psi^2 \phi^2 D$ class operators

 $e^+e^- \rightarrow hZ$

 $e^+e^- \rightarrow hhZ$

Physics @ CLIC, CERN, July 2017

$e^+e^- \rightarrow hZ$, $hhZ \& the \psi^2 \phi^2 D$ class operators

 $e^+e^- \rightarrow hZ$

 $e^+e^- \rightarrow hhZ$

$$d\sigma(hZ, hhZ) = d\sigma_{SM}(hZ, hhZ) \left(1 + \frac{s}{X^2} \delta_1(f_i) + \frac{s^2}{A^4} \delta_2(f_i)\right)$$

$$\delta_1(s, f_i) = \frac{1}{2c_W s_W} \frac{a_e \left[(f_{HL} + f'_{HL}) - \frac{f_{He}}{2}\right] + v_e \left[(f_{HL} + f'_{HL}) + \frac{f_{He}}{2}\right]}{a_e^2 + v_e^2} \frac{v^2}{M_Z^2},$$

$$\delta_2(s, f_i) = \left(\frac{1}{4c_W s_W}\right)^2 \frac{\left[(f_{HL} + f'_{HL}) - \frac{f_{He}}{2}\right]^2 + \left[(f_{HL} + f'_{HL}) + \frac{f_{He}}{2}\right]^2}{a_e^2 + v_e^2} \left(\frac{v^2}{M_Z^2}\right)^2$$

- An interesting hZ hhZ correlation ...
- Same sensitivity to f_{HL} & f'_{HL}

Shaouly Bar-Shalom

17

$e^+e^- \rightarrow hZ$, hhZ: numerical analysis

Sensitivity:

$$N_{SD} \left(\sqrt{s}, f_i, \Lambda \right) \equiv \frac{N^T - N^{SM}}{\sqrt{N^T}}$$
$$N^{T,SM} = \sigma^{T,SM} L$$

	E _{cm} [TeV]	L [fb-1]
	0.5	500
<u>Benchmark designs:</u>	1	1000
	2	2000
	3	2500

Physics @ CLIC, CERN, July 2017

$e^+e^- \rightarrow hZ$, hhZ: numerical analysis

"Validity" function:
$$\mathcal{R} \equiv \frac{\Delta \sigma_2}{\sigma_1} \quad \sigma = \sigma_{SM} \left(\underbrace{1 + \frac{\delta_1(s, f_i)}{\Lambda^2}}_{\sigma_1} + \underbrace{\frac{\delta_2(s, f_i)}{\Lambda^4}}_{\Delta \sigma_2} \right)$$

Values of Λ for which R>1 are considered to be inconsistent with the EFT prescription ...

Physics @ CLIC, CERN, July 2017

Limitations of the EFT

"Validity" function:
$$\mathcal{R} \equiv \frac{\Delta \sigma_2}{\sigma_1} \quad \sigma = \sigma_{SM} \left(\underbrace{1 + \frac{\delta_1(s, f_i)}{\Lambda^2}}_{\sigma_1} + \underbrace{\frac{\delta_2(s, f_i)}{\Lambda^4}}_{\Delta \sigma_2} \right)$$

Values of Λ for which $\mathbb{R}>1$ are considered to be inconsistent with the EFT prescription ...

Results for the $\psi^2 \phi^2 D$ op's cannot be "trusted" below these values without knowing the full dim 8 effect ...

Physics @ CLIC, CERN, July 2017

Naive Analysis

Realistic Background Analysis

σ (e⁺e⁻ \rightarrow hZ, hhZ) \cdot BR(h,Z \rightarrow F)

full simulation of backg with appropriate kinematic & acceptance cuts (but still a theorist analysis ...)

NA ~ RBA

Physics @ CLIC, CERN, July 2017

BG considerations

BG depends on the subsequent decays of h & Z:

Physics @ CLIC, CERN, July 2017

BG considerations

BG depends on the subsequent decays of h & Z:

Consider all SM + NP(O_{HL}) diagrams for any of the final states and optimize with a set of kinematic + acceptance cuts:

e.g., for e+e- \rightarrow hZ \rightarrow hee: 85 GeV < M_{ee} < 95 GeV p_T(e) > 15 GeV, p_T(ee) > 80 GeV

Physics @ CLIC, CERN, July 2017

$e+e- \rightarrow hZ$: full set of SM + NP diagrams

$e+e- \rightarrow hZ \rightarrow hee+h\mu\mu: \ 24 \ diag's \quad e+e- \rightarrow hZ \rightarrow h\nu\nu: \ 16 \ diag's$

$e+e- \rightarrow hZ \rightarrow hbb: 18 diag's$

Physics @ CLIC, CERN, July 2017

$e+e- \rightarrow hZ$: full set of SM + NP diagrams

e+e- \rightarrow hZ \rightarrow hee+hµµ: 24 diag's e+e- \rightarrow hZ \rightarrow hvv: 16 diag's

 $e+e- \rightarrow hZ \rightarrow hbb: 18 diag's$

$e+e- \rightarrow hZ \rightarrow hvv$: comparison with naive estimates]

	۰ ۱	$\sqrt{s} = 500 {\rm Ge}^{-1}$	V	$\sqrt{s}=1$ TeV			
	Before cuts	After cuts	$\sigma_{hZ} \times \mathcal{BR}_Z$	Before cuts	After cuts	$\sigma_{hZ} \times \mathcal{BR}_Z$	
σ^{SM} [fb]	757	3.64	3.74	205.7	0.7874	0.840	
$(\sigma^T)_{\Lambda=6 TeV}$ [fb]	759	4.029	4.16	206.7	1.182	1.127	

		$\sqrt{s}=2$ TeV	-	$\sqrt{s}=3$ TeV			
	Before cuts	After cuts	$\sigma_{hZ} \times \mathcal{BR}_Z$	Before cuts	After cuts	$\sigma_{hZ} \times \mathcal{BR}_Z$	
σ^{SM} [fb]	374.9	0.1889	0.203	483.6	0.0834	0.0898	
$(\sigma^T)_{\Lambda=6TeV}$ [fb]	376	0.7574	0.8190	485.8	0.9561	1.03	

TABLE II: SM and SM+NP cross-sections in the $e^+e^- \rightarrow h\nu_e\overline{\nu}_e$ channel including all SM and NP diagrams, after imposing the cut on the missing invariant mass of the two neutrinos $m_Z - 4\Gamma_Z < \mathcal{M}_{\nu_e\overline{\nu}_e} < m_Z + 4\Gamma_Z$ (in order to suppress the WW-fusion BG, see Fig. 2 and Appendix C). Also shown are the corresponding naive cross-sections of section V: $\sigma_{hZ} \times \mathcal{BR}_Z$, where $\sigma_{hZ} \equiv \sigma \left(e^+e^- \rightarrow hZ\right)$ and $\mathcal{BR}_Z \equiv \mathcal{BR} \left(Z \rightarrow \nu_e\overline{\nu}_e\right) = 6.6\%$. Results are given for $\sqrt{s}=500$ GeV, 1 TeV (upper table) and 2,3 TeV (lower table). For the NP cross-section we take $\Lambda = 6$ TeV.

e+e- \rightarrow **hhZ:** sample diagrams

Sensitivities

 $\frac{1}{\Lambda^2} i \Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \overline{\psi} \gamma^{\mu} \psi$

e+e- \rightarrow hZ \rightarrow hee+hµµ, hvv, hbb

@ ILC & CLIC

e+e- \rightarrow hhZ \rightarrow hhee+hhµµ, hhvv, hhbb

Λ ~ 7 TeV, borderline sensitivity
 @ CLIC energies

An hZ – hhZ correlation

Due to similarity of diff CSX's:

Physics @ CLIC, CERN, July 2017

Shaouly Bar-Shalom

29

An hZ – hhZ correlation

Due to similarity of diff CSX's:

Physics @ CLIC, CERN, July 2017

- The dim 6 $\psi^2 \phi^2 D$ class op's (generated by tree-level exchanges of heavy vector-boson exchanges in the underlying UV theory) give rise to interesting new eehZ & eehhZ contact interactions.
- ee \rightarrow hZ @ the ILC/CLIC is expected to be sensitive to $\Lambda_{w^{2}o^{2}D} \sim O(10 \text{ TeV})$
- ee \rightarrow hhZ: $\Lambda_{\psi 2\phi 2D}$ ~ O(7 TeV) borderline at a 3 TeV CLIC, but
 - very useful for probing the NP type due to a potential correlation with ee \rightarrow hZ
 - for $\Lambda_{\psi 2\phi 2D}$ < 7 TeV need to calculate/estimate the dim 8 contribution

• Outlook:

- A full study of all dim 6 SMEFT effect in ee \rightarrow hZ, hhZ (multiple operators)
- Initial beam polarization effects
- A study of the effects of dim 8 op's
- A study of the sensitivity of pp \to hV,hhV (LHC) to the $\psi^2\phi^2D$ class op's

Physics @ CLIC, CERN, July 2017

ADDITIONS

Physics @ CLIC, CERN, July 2017

Physics @ CLIC, CERN, July 2017

FIG. 12: The $p_T(Z)$ distribution in $e^+e^- \rightarrow hZ$ at $\sqrt{s} = 2$ TeV (upper left), the invariant mass distribution of hh in $e^+e^- \rightarrow hhZ$ at $\sqrt{s} = 1$ TeV (upper right), the invariant mass distribution of Z + the Higgs with the largest- p_T in $e^+e^- \rightarrow hhZ$ at $\sqrt{s} = 500$ GeV (lower left) and the invariant mass of Z + the Higgs with the 2nd largest- p_T in $e^+e^- \rightarrow hhZ$ at $\sqrt{s} = 500$ GeV (lower right). The blue-solid histogram depicts the SM predictions while the red (green) solid lines correspond to the total cross-section including the effect of \mathcal{O}_{HL} , where $f_{HL} = 1$ and $\Lambda = 6$ TeV ($\Lambda = 2$ TeV).

Physics @ CLIC, CERN, July 2017

heavy vectors operators

Consider for example the case where a new heavy vector singlet field V'_{μ} , with a mass $M \gg v$, is added to the SM lagrangian (the heavy vector can be thought of as some U(1)' remnant of a higher broken symmetry). The lagrangian piece for V'_{μ} then reads:

$$\mathcal{L} = -\frac{1}{4}V'_{\mu\nu}V'^{\mu\nu} + \frac{1}{2}M^2 V'_{\mu}V'^{\mu} + V'_{\mu}\left(gi\Phi^{\dagger}\overleftrightarrow{D}^{\mu}\Phi + \tilde{g}\overline{\psi}\gamma^{\mu}\psi\right), \qquad (2)$$

where, the "Hermitian derivative" in (2) is defined as $\Phi^{\dagger} \overleftarrow{D}_{\mu} \Phi \equiv \Phi^{\dagger} D_{\mu} \Phi - D_{\mu} \Phi^{\dagger} \Phi$. Integrating out the heavy field V'_{μ} , by using its Equation of Motion (EOM), we can express V'_{μ} in terms of the SM light fields:

$$V'_{\mu} = -\frac{1}{(\Box - M^2)} \left(g \Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi + \tilde{g} \overline{\psi} \gamma^{\mu} \psi \right) , \qquad (3)$$

so that, performing the propagator expansion:

$$\frac{1}{(\Box - M^2)} \underset{\Box \ll M^2}{\approx} -\frac{1}{M^2} \sum_{k=0}^{\infty} \left(\frac{\Box}{M^2}\right)^k, \qquad (4)$$

and keeping only the first term, i.e. k = 0, we obtain:

$$V'_{\mu} \underset{\Box \ll M^2}{\approx} \frac{1}{M^2} \left(g \Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi + \tilde{g} \overline{\psi} \gamma^{\mu} \psi \right) . \tag{5}$$

Plugging now V'_{μ} in (5) back into the original lagrangian of (2), we obtain the NP Lagrangian piece which emerges from the heavy vector-boson exchange:^[2]

$$\Delta \mathcal{L}_{V'} = \frac{f_{V'}}{\Lambda^2} \mathcal{O}_{V'} , \qquad (6)$$

where $f_{V'} = g\tilde{g}$, $\Lambda = M$ and $\mathcal{O}_{V'}$ is the dimension 6 heavy vector singlet operator:

$$\mathcal{O}_{V'} = i\overline{\psi}\gamma^{\mu}\psi\Phi^{\dagger}\overleftarrow{D}^{\mu}\Phi \ . \tag{7}$$

Physics @ CLIC, CERN, July 2017