SUSY @ CLIC

VUB-LOGO-BLACK

Alberto Mariotti

Physics at CLIC — CERN —

17-18 July 2017

https://cas.vub.ac.be/cas/images/logo.svg

13/10/16 17:10

Is low energy SUSY still alive?

Alberto Mariotti (VUB)

SUSY at LHC 13

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

Only a selection of available mass limits. Probe *up to* the quoted mass limit for mg ≈0 GeV unless stated otherwise

Alberto Mariotti (VUB)

SUSY@CLIC

Why SUSY?

Why still SUSY?

Alberto Mariotti (VUB)

SUSY@CLIC

Naturalness status

Little hierarchy problem

Negative LHC results brings in a minimal amount of fine tuning

Similar argument applies to standard SUSY and other BSM models

What next options?

1. Give up some further assumption (e.g. RPV...)

- 2. Accept Little Fine Tuning and aim at next collider
- 3. Investigate alternative natural models and their signatures

Alberto Mariotti (VUB)

SUSY as BSM paradigm

- * Extra scalars ...
- * Twin Higgs ...

SUSY as a proxy for a variety of BSM scenarios

CLIC vs SUSY

CLIC opportunities for SUSY?

Alberto Mariotti (VUB)

CLIC vs SUSY

SUSY discovered at LHC

If SUSY discovered at the LHC then CLIC will provide crucial information on the sparticle spectrum

- * Precision mass measurement
- * Couplings and mixing angles measurement
- * CP and Spin property of sparticles
- * Possibility to probe sparticle mass unification and origin

Documented in initial physics program for CLIC

"... If nature is indeed supersymmetric, it is likely that the LHC will have observed part of the spectrum by the time CLIC comes into operation ..." hep-ph/0412251

... optimistic perspective ...

Alberto Mariotti (VUB)

SUSY@CLIC

SUSY leftover at LHC

? What is left if LHC does not find any SUSY ?

* Heavy SUSY ...

What is CLIC prospect in these cases?

Alberto Mariotti (VUB)

Lepton collider and SUSY

- * I will review results from ILC and FCC-ee and CLIC studies 1202.5940 1504.01726 * I will try to identify interesting open questions in relation to LHC era
- * Personal naive selection, please add comments/remarks/suggestions

Alberto Mariotti (VUB)

SUSY@CLIC

SUSY Production (sfermions)

SUSY particles are produced in pairs through weak interaction

* Selectron produced via both s-channel and t-channel

 γ, Z

 $e^{}$

* Sneutrino produced via both s-channel and t-channel

* Squarks and other sleptons only via s-channel independent

 γ, Z

Dependence

neutralino

Dependence

on chargino

Spectru

SUSY Production (sfermions)

Alberto Mariotti (VUB)

SUSY@CLIC

Reach for sfermions

Stau-neutralino co-annihilation covered

Alberto Mariotti (VUB)

SUSY@CLIC

* CLIC over performant on EW states!

Alberto Mariotti (VUB)

SUSY@CLIC

Sneutrino NLSP

* Motivated in portion of GGM parameter space to get Higgs mass * Colored sparticles very heavy *m*_{U3} (TeV) *m*_{U₃} (TeV) 2 Simplified model * Small mass splitting $\tilde{H} \square \tilde{W} \blacksquare \tilde{g}$ $M_{\rm mess}$ =10¹⁵ GeV $\tilde{\nu}_L W^*$ $\Delta_{\tilde{m}} \equiv m_{\tilde{l}_L} - m_{\tilde{\nu}} = 1$ $\tilde{\nu}_L$ m_{Q_3} (TeV) 1606.07501 $\ell \tilde{G}$ νĜ

* Final state too soft to be probed at LHC!!!

What about CLIC?

 \tilde{G}

- Connerent flavour)
 Supround from WW and tau-tau production
 * Impose E(lep) and DPhi cuts to remove SM background pretining
 * Left handed slepton probed up to kinematical #

Alberto Mariotti (VUB)

SUSY@CLIC

Stop reach

10

M_{med} [TeV]

Comparing CLIC reach with LHC prospects

Alberto Mariotti (VUB)

SUSY@CLIC

SUSY Production (gauginos)

CLIC has enormous potential in unraveling the EW-ino sector independent e^{\cdot} * s-channel γ, Z \widetilde{C}_{i}^{+} e^+ * t-channel contributions Dependence on slepton Z \tilde{e}_L, \tilde{e}_R \tilde{e}_L, \tilde{e}_R spectrum N_i

* All parameters in mass matrix can be reconstructed (M1,M2,\mu,tanb) See e.g.1104.0523, 1202.5489

Alberto Mariotti (VUB)

Higgsino LSP

Probing the scale of SUSY br

Neutral SUSY

SUSY can manifest in QCD neutral states

* Folded SUSY

- * Still traces in EW charged folded stops...
- * Twin SUSY
 - * Higgs portal to hidden sector
 - * Handle on the (Twin) Higgs and its possible exotic decays
 - * Extended MSSM-like scalars augmented with MET

Neutral SUSY

SUSY can manifest in QCD neutral states

- * Folded SUSY
 - * Still traces in EW charged folded stops...
- * Twin SUSY
 - * Higgs portal to hidden sector
 - * Handle on the Twin Higgs possible exotic decays
- dden sector rin Higgs ets for possible exotic de brospens augmented with MET * Extended MSSM-Jil

Double copy of MSSM scalar sector

Spectrum controlled by two parameters

 m_A MSSM-like scalars

Twin-Higgs

At LHC constraints from resonance searches and MSSM scalar searches

Alberto Mariotti (VUB)

SUSY@CLIC

CLIC vs Heavy SUSY

Minimal GMSB models consistent with Higgs mass

1504.05200

CLIC vs Heavy SUSY

Minimal GMSB models consistent with Higgs mass

20 **SUPER** CLIC ТÖ TeV TeV 10 4 - 4 - 0 2222 ຸ ຕິຕັ н н н н 2222 FCC-hh 5 CLIC LHC14 LHC8 0 M_1 M_2 Mз μ m_{L_3} m_{E_3} $m_{Q_{1,2}}$ $m_{U_{1,2}}$ $m_{D_{1,2}}$ $m_{L_{1,2}}$ $m_{E_{1,2}}$ m_A m_{Q_3} m_{U_3} m_{D_3}

For competing with FCC-HH in heavy SUSY we need "SUPER"-CLIC

Alberto Mariotti (VUB)

SUSY@CLIC

17-7-2017

1504.05200

CLIC for SUSY

What CLIC can bring to SUSY?

Alberto Mariotti (VUB)

SUSY@CLIC

CLIC for SUSY

What CLIC can bring to SUSY?

SUSY@CLIC

EW gauginos

CLIC has enormous potential in unraveling the EW-ino sector

* Masses can be reconstructed (at % level)

Ex: chargino into bosons

- * If all neutralino/chargino are accessible challenge is disentangle the topologies
- * Model dependence introduced by slepton t-channel

Many available results are on benchmarks

- * All parameters in mass matrix can be reconstructed (M1,M2,\mu,tanb)
 - * Only accessing few neutralino/chargino one can still reconstruct parameters

Alberto Mariotti (VUB)

Polarization Useful

SUSY@CLIC

Gaugino reach

Comparing CLIC reach with LHC prospects

* CLIC over performant on EW states!

Alberto Mariotti (VUB)

SUSY@CLIC

MSSM Higgses

Heavy Higgses probed at the kinematic threshold

Alberto Mariotti (VUB)

SUSY@CLIC

RPV susy at CLIC

RPV couplings

* Displaced/long lived decays (also charged object)

* Prompt decay signal with multi-object final states

What are prospects for RPV couplings with most impact in hiding LHC physics?

Alberto Mariotti (VUB)

Vanilla Natural SUSY

Gluino mass [GeV]

17-7-2017

Alberto Mariotti (VUB)

Indirect Probe of SUSY

- * Lepton collider offer opportunities for precise Higgs couplings
- * Indirect probe of new physics!
- * Measurement of Higgs coupling can shed light on naturalness
- * Colored top partners will modify Higgs couplings to bosons

* Also Zh cross section measurement can provide sensitivity

Alberto Mariotti (VUB)