Testing the Twin Higgs Mechanism at a Linear Collider Physics at CLIC Workshop 18 July 2017 Chris Verhaaren UC Davis

With Zackaria Chacko, Can Kilic, and Saereh Najjari

Some Natural Philosophy

- We still do not understand why the Higgs is light
- We know that the Standard Model is "only" an effective field theory
 - Dark Matter, gravity, etc are not included
- Only experiment can determine what structure, if any, keeps the Higgs naturally light

No evidence of compositeness or symmetry partners

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	$\int \mathcal{L} dt [fb$	-1]		Ν
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 <i>b</i>	Yes	36.1	\tilde{b}_1	•	
rks ion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 <i>e</i> , <i>µ</i> (SS)	1 <i>b</i>	Yes	36.1	\tilde{b}_1		
uct	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$	0-2 <i>e</i> , <i>µ</i>	1-2 <i>b</i>	Yes	4.7/13.3	\tilde{t}_1	117-170 GeV	
bo	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$	0-2 <i>e</i> , <i>µ</i>	0-2 jets/1-2 <i>k</i>	Yes a	20.3/36.1	\tilde{t}_1	90-198 GeV	
pr.	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	0	mono-jet	Yes	3.2	\tilde{t}_1		90-323 (
ge ect	$\tilde{t}_1 \tilde{t}_1$ (natural GMSB)	2 <i>e</i> , <i>µ</i> (<i>Z</i>)	1 <i>b</i>	Yes	20.3	\tilde{t}_1		
3 rd dire	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 <i>e</i> , <i>µ</i> (<i>Z</i>)	1 <i>b</i>	Yes	36.1	\tilde{t}_2		
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	Yes	36.1	\tilde{t}_2		

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

	Model	ℓ , γ	Jets $\dagger E_{T}^{miss}$	∫£ dt[fb ⁻	-1]
Heavy quarks	$\begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array}$	$0 ext{ or } 1 ext{ } e, \mu ext{ } 2 ext{ } 2 ext{ } 2 ext{ } 2 ext{ } e, \mu ext{ } 1 ext{ } e, \mu ext{ } $	$\geq 2 \text{ b}, \geq 3 \text{ j} \text{ Yes}$ $\geq 1 \text{ b}, \geq 3 \text{ j} \text{ Yes}$ $\geq 1 \text{ b}, \geq 1 \text{ J/2j} \text{ Yes}$ $\geq 2 \text{ b}, \geq 3 \text{ j} \text{ Yes}$ $\geq 2/\geq 1 \text{ b} - \frac{1}{2} \text{ b}, \geq 1 \text{ J/2j} \text{ Yes}$ $\geq 4 \text{ j} \text{ Yes}$	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass T mass T mass B mass B mass B mass Q mass
		$\sqrt{s} = 8 \text{ TeV}$	√s = 13 TeV		10 ⁻¹

Looks like symmetry based naturalness is "under stress"

Results thus far...

(Color) Neutral Naturalness

- important role
- "hidden" QCD

Twin Higgs Chacko, Goh, Harnik, hep-ph/0506256

- Make a 'twin' copy of the entire SM with SU(4) symmetric Higgs sector
 - Gauge two SU(2) subgroups, A for SM and B for BSM
 - Exchange symmetry equates A and B gauge couplings
- H gets a VEV, f, breaks SU(4) to SU(3), gives 7 NGBs
- 6 eaten by A and B gauge bosons, one physical Higgs
- One loop contributions are SU(4) symmetric, do not affect pNGB Higgs $\frac{3\Lambda^2}{8\pi^2} \left(\lambda_{t_A}^2 |H_A|^2 + \lambda_{t_B}^2 |H_B|^2 \right) = \frac{3\lambda_t^2 \Lambda^2}{8\pi^2} \left(|H_A|^2 + |H_B|^2 \right) = \frac{3\lambda_t^2 \Lambda^2}{8\pi^2} |H|^2$

Soft Twin Breaking

- If the Twinning were perfect, the Higgs would have equal VEV in each sector and equal coupling to SM and twin particles $v_A^2 = v_B^2 = f^2$
 - Already ruled out by Higgs measurements
- Reminiscent of SUSY, the discrete symmetry can be softly broken, making the Higgs mostly a SM particle $v_B \gg v_A$
 - This also raising the masses of twin states
 - Constitutes a tuning

$$\sim \frac{3\lambda_t^2}{8\pi^2} m_T^2 \ln \frac{\Lambda^2}{m_T^2}$$

Phenomenology of the Twin Higgs

 Higgs Couplings are reduced, similar to any pNGB model

$$g_{\rm A} = g_{\rm SM} \cos \vartheta$$

- Larger branching fraction to invisible states
- What can be done at the LHC?
 - Couplings to 10% after HL-LHC

See Burdman, Chacko, de Lima, Harnik, CV 1411.3310

Higgs Couplings

- A Linear collider can probe much deeper into the natural parameter space
 - Expect better than 1% precision, corresponding to ~% level tuning
- But coupling deviations arise in many models
- How do we distinguish the Twin Higgs?

Invisible Higgs Width?

- invisible width is a prediction
- Spectrum (see e.g. Craig, Katz, Strassler, Sundrum 1501.05310)
 - Preserves the mechanism, spoils this prediction
- There is an irreducible increase to the invisible width, but the total value is model dependent

• In the mirror twin Higgs, after Higgs coupling deviations are measured the

However, cosmological considerations motivate variations in the twin sector

Radial Mode as Twin Higgs

- Expect the radial mode to be close to the cutoff, but a lighter state is only mildly tuned
- Mixes with the light Higgs, with mixing angle θ
- Coupling deviations change $g_{hA} = g_{SM} \cos(\vartheta - \theta)$

 $g_{HA} = g_{SM}(m_H)\sin(\vartheta - \theta)$

$$V = -\mu^{2} \left(H_{A}^{\dagger} H_{A} + H_{B}^{\dagger} H_{B} \right) + \lambda \left(H_{A}^{\dagger} H_{A} + H_{B}^{\dagger} H_{B} \right)^{2}$$

$$\overrightarrow{4} + m^{2} \left(H_{A}^{\dagger} H_{A} - H_{B}^{\dagger} H_{B} \right) + \delta \left[\left(H_{A}^{\dagger} H_{A} \right)^{2} + \left(H_{B}^{\dagger} H_{B} \right)^{2} \right] \quad \text{Breal}$$

$$\text{Ie vacuum, require} \quad \frac{m_{H}}{m_{h}} \geq \frac{m_{T}}{m_{t}} = \cot \vartheta \quad SU(4)$$

- Breaks Z_2 and SU(
- For stab
- The EW VEV and Higgs mass constrain the potential
- determine the rest
- All rates are then predictions of the framework

The Twin Higgs Portal

• Higgs potential is defined by 4 parameters (see Barbieri, Gregoire, Hall hep-ph/0509242)

Measurements of Higgs coupling deviations and the mass of the radial mode

LHC Heavy Higgs Searches

- The LHC has looked for heavy scal resonant di-Higgs search
 - Not nearly as powerful as LHC Higgs coupling probes
- Similar ATLAS search $ggF \rightarrow H \rightarrow hh \rightarrow WW\gamma\gamma$ (ATLAS-CONF-2016-071) gives a weaker bound and extrapolation to higher luminosity appears systematics dominated

The LHC has looked for heavy scalars, the best bound come from a CMS

Projected LHC Reach with ZZ

• Using CMS-PAS-FTR-13-024 and ATL-PHYS-PUB-2013-016 we find the projected reach for $pp \rightarrow H \rightarrow ZZ \rightarrow \ell \ell \ell \ell$

- Clearly, the LHC can test the Twin Higgs for some parameter regions
- How does a linear collider compare?

Producing the Twin Higgs

- Branching to EW bosons dominates
 - To the B sector when kinematically allowed
- For heavier twin tops, branching to visible is enhanced
- WW has largest ratio, followed by hh

Resonant di-Higgs

- While the WW rate is largest, the backgrounds overwhelm the signal
- The di-Higgs rate to 4 b's has much smaller background
 - Benefit of using a lepton collider!
- Simply cut the background by requiring the 4 b's reconstruct 2 Higgses
- Require 3 b-tags

Stolen from Alexander Mitov's talk

Detector Issues

10

8

0

0

[%]

RMS₉₀(E) / Mean₉₀(E)

- Use The International Linear Collider Technical Design Report: Vol.4 1306.6329
- Lepton energy resolution $\left(1.1 \oplus \frac{16.6}{\sqrt{E \,(\text{GeV})}}\right)\%$
- Jet energy resolution $\sim 3\%$

Mass Measurement Comparison

Testing the Twin Higgs

- There are regions in which the LHC and CLIC both can measure Higgs coupling deviations and the mass of the Twin Higgs
 - Heavy Higgs mass is comparable, CLIC generally reaches heavier twin top masses
 - Thus, CLIC gives more complete coverage to natural parameter space
- These two measurements, along with the Higgs mass and EW VEV completely specify the potential parameters
- The total di-Higgs rate is then a prediction of the Twin Higgs framework

Can we do more?

- into di-Higgs
- We have examined the WW channel and found small excesses
- Measuring the rate of Twin Higgs to invisible would be much more and Michael R. can help...)
- to have large enough cross section relative to backgrounds

• In this scenario we measure the mass from the di-Higgs signal and the rate

• These reinforce the explanation, but are not convincing on their own

compelling, signaling the rich hidden sector (Perhaps Ideas from Pedro S.

Cannot use W fusion for this channel, associated production does not seem

Conclusions and Continuations

- The LHC will not be the last word on naturalness
- coupling deviations of many natural Twin Higgs models
- mechanism, but a CLIC like machine provides greater coverage
 - Higher energy machines can probe naturalness more completely
- Still looking into how to determine the invisible Twin Higgs width

• The precision of a linear lepton collider can detect the irreducible Higgs

Both the LHC and a linear collider can potentially confirm the Twin Higgs