

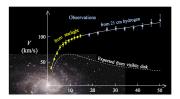
Dark Sector at CLIC

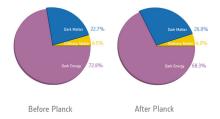
Michael Rauch | Physics at CLIC - July 18, 2017

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

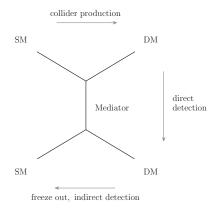
Motivation



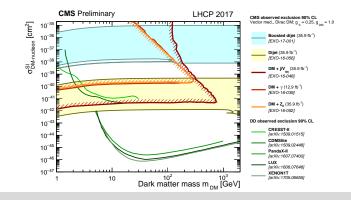

Strong indications for existence of Dark Matter (DM)

- Rotation curves of galaxies
- Galaxy clusters and gravitational lensing
- Cosmic microwave background

$\rightarrow \Lambda CDM Model$


- \Rightarrow Dark sector in many BSM extensions
 - particle(s) without electric or colour charge
 - protected by global symmetries → stable on astrophysical time scales
 - often not completely decoupled
 ↔ interacts with SM by Z boson or mediator exchange

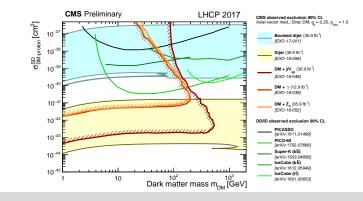
Feynman Diagram View


Detection of Dark Sector

Collider searches: LHC

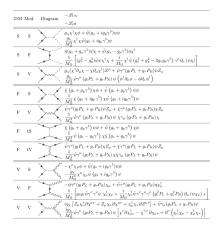
- detection in mono-jet/mono-photon searches $pp \rightarrow j/\gamma + \not \!\!\! E_T$
- Sensitivity almost independent of DM mass
- lacksquare \rightarrow limits in low-mass region stronger than from direct detection experiments

 $1 \text{fb} \cong 10^{-39} \text{cm}^2$


Detection of Dark Sector

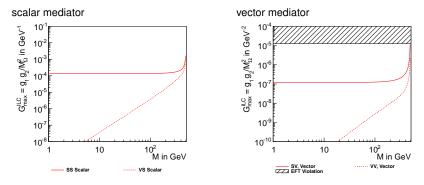
Collider searches: LHC

- detection in mono-jet/mono-photon searches $pp \rightarrow j/\gamma + \not \!\! E_T$
- Sensitivity almost independent of DM mass
- \bullet \rightarrow limits in low-mass region stronger than from direct detection experiments


 $1 fb \mathbin{\widehat{=}} 10^{-39} cm^2$

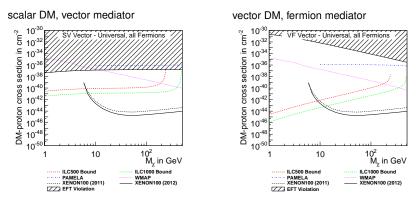
Discovering a Dark Sector

[Dreiner, Huck, Krämer, Schmeier, Tattersall]


- Extensive survey of different combinations
- scalar, fermion and vector dark matter
- process $e^+e^- \rightarrow \gamma \chi \chi$

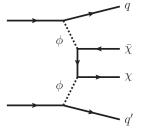
Exclusion Limits

Setup: $\sqrt{s} = 1$ TeV, $\mathcal{L} = 500$ fb⁻¹


coupling reach (G = $\frac{g_1 g_2}{M_{\text{Mediator}}}$): 10⁻⁴ GeV / 10⁻⁷ GeV²

fairly independent of mass up to kinematic threshold except vector DM: much stronger limit for small DM mass

Comparison with Direct Detection



low-mass range ($\lesssim 10 \text{ GeV}$): competitive with astrophysical bounds in many models high-mass range ($\gtrsim 100 \text{ GeV}$): difficult to push into unexcluded regions

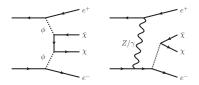
Determining Properties of a Dark Sector

- Mono-jet / Mono-photon searches: WIMP recoils against high-p_T jet/photon
- \Rightarrow Only total amount of $\not \in_T$ can be measured, i.e. differential c.s. for one observable
- $\blacksquare \rightarrow$ Limited tool for determining properties
- \Rightarrow Test other processes

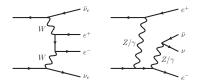
Vector-Boson Fusion

(ϕ : mediator, χ : DSP (dark sector particle))

- proven as great tool already in Higgs phenomenology
- Predominant background: $pp \rightarrow Zjj \rightarrow \nu \bar{\nu} jj$ (both QCD and VBF-EW)
- couplings very constrained from mono-jet searches
- ↔ O(electro-weak coupling) required for useful phenomenology


[see also An, Wang, Zhang]

Moving to e^+e^- colliders


ightarrow Try same topology at e^+e^- collider

Signature: e^+e^- pair $+\not\!\!\! E_T$

- e^+e^- collider clean environment:
 - almost no exp. systematics
 - smaller theory uncertainties
 - \blacksquare \Rightarrow mostly statistics limited

Main backgrounds:

Model Setup

Simple effective model used for study:

- DSP χ : Dirac fermion
- Mediator ϕ : scalar or vector

Mediator couples to electrons only (results for leptons-only basically identical)

 \rightarrow Interaction terms appearing in the Lagrangian:

	scalar	vector
е	i g $_{ee\phi,S}$ ēe ϕ_S	i g $_{ee\phi,V}$ ē $\gamma_{\mu}e\phi_{V}^{\mu}$
χ	i $g_{\chi\chi\phi,S} ar\chi\chi\phi_S$	$\mid i g_{\chi\chi\phi,V} \bar{\chi}\gamma_\mu\chi \phi^\mu_V$

Define effective mass:

$$M_* = rac{M_\phi}{\sqrt{g_{ee\phi}g_{\chi\chi\phi}}}$$

Heavy mediator can be integrated out:

$$g_{ee\phi}rac{1}{q^2-M_{\phi}^2}g_{\chi\chi\phi} \stackrel{q^2 \ll M_{\phi}^2}{=} g_{ee\phi}rac{1}{-M_{\phi}^2}g_{\chi\chi\phi} = -rac{1}{M_{*}^2}$$

 \rightarrow effective dimension-6 operators: $\bar{e}e\,\bar{\chi}\chi$, $\bar{e}\gamma_{\mu}e\,\bar{\chi}\gamma^{\mu}\chi$

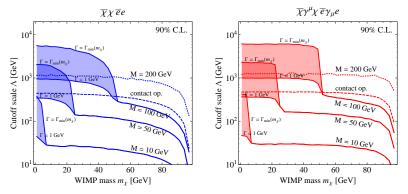
Model setup

Benchmark points for study:

model	mediator mass	mediator spin	DSP mass	<i>M</i> _*
LSL	8 GeV	0 (scalar)	5 GeV	30 GeV
LVL	8 GeV	1 (vector)	5 GeV	30 GeV
LSH	8 GeV	0 (scalar)	120 GeV	27.4 GeV
LVH	8 GeV	1 (vector)	120 GeV	21 GeV
HSL	200 GeV	0 (scalar)	5 GeV	1250 GeV
HVL	200 GeV	1 (vector)	5 GeV	1250 GeV
HSH	200 GeV	0 (scalar)	120 GeV	332.4 GeV
HVH	200 GeV	1 (vector)	120 GeV	511.8 GeV

- \rightarrow light mediator
- \Rightarrow full momentum dependence in propagator required
- \rightarrow *M*_{*} used as effective coupling constant

Technical setup:


- Event Simulation: MadGraph/MadEvent 4.5.1
- Mediator width: BRIDGE (width small: < 1 GeV)

[Meade, Reece]

Benchmark Couplings

for heavy DSP strong constraints from direct detection experiments

- $ightarrow e^+e^-$ cross sections too small
- \leftrightarrow DSP stable on collider time scales, but not on astrophysical ones
- \rightarrow for simplicity: similar c.s. as in light DSP case

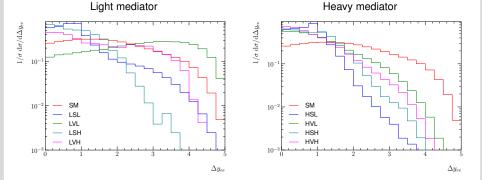
Cross sections

- Cuts: $p_{T,e} > 10 \text{ GeV}, |\eta_e| < 2.5, p_T > 50 \text{ GeV}$
- Integrated cross sections for ILC, $\sqrt{s} = 500$ GeV:

model	cross section in fb			
	unpolarized	++-polarized	+polarized	
SM	115.8	49.1	36.4	
LSL	1.60	1.79	1.40	
LVL	15.07	12.80	17.02	
LSH	1.45	1.80	1.10	
LVH	10.00	7.64	12.33	
HSL	1.17	1.43	0.92	
HVL	0.85	0.71	0.89	
HSH	1.18	1.45	0.90	
HVH	0.85	0.64	0.98	

- Linear collider setup allows beams to be polarized:
 - 80% for e⁻ beam (first index)

30% for e^+ beam (second index)


- $\blacksquare \rightarrow$ significant background reduction possible
 - -+ and -- combinations lead to background enhancement \Rightarrow not considered
- $\blacksquare \leftrightarrow$ opposite polarization than required for Higgs

Differential Distributions

Rapidity difference of the two leptons Δy_{ee}

[Andersen, MR, Spannowsky]

Clearly distinct shape between different contributions

 \rightarrow Explanation?

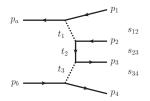
Regge Theory

- (non-relativistic part) developed by T. Regge in 1957
- analytic behaviour of scattering amplitudes as function of angular momentum
- angular momentum can be any complex value

$$A(z) \propto z^{\ell(E^2)}$$
 $z \gg 1$

- relativistic: $z \gg 1 \longrightarrow$ large momentum transfer t
- apply to crossed channel $s \leftrightarrow t$

$$A \propto s^{\ell(t)}$$
 $s \gg |t|$


- Theory of strong interactions in 1960's
- $\blacksquare \rightarrow$ largely replaced by QCD nowadays
- $\blacksquare \rightarrow$ phenomenological tool for large-energy scattering

[Mandelstam]

Multi-Regge kinematic limit

Multi-Regge kinematic limit:

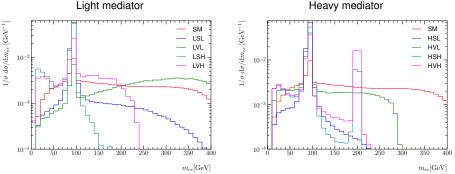
invariant mass between final-state particles large compared to propagating momentum and masses

$$s_{ij} \gg |t_i|, m_{\phi,\chi}$$

 \Rightarrow VBF cuts

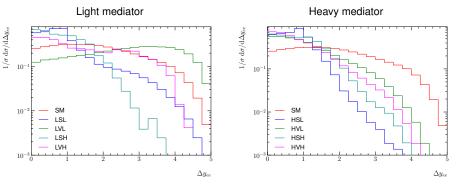
$$\mathcal{M}^{p_a p_b \to p_1 p_2 p_3 p_4} \to s_{12}^{\alpha_1(t_1)} s_{23}^{\alpha_2(t_2)} s_{34}^{\alpha_3(t_3)} \gamma$$

•
$$\gamma = \gamma$$
(couplings, t_i , $\frac{s_{ij}}{\prod s_{kl}}$)


- $\alpha_i = \text{spin } J_i$ of t-channel particle *i* (+ radiative corrections)
- Remember: $s_{ij} = 2 p_{T,i} p_{T,j} (\cosh(y_i y_j) \cos(\phi_i \phi_j))$
- ⇒ If messenger masses negligible distinguish messenger spin by looking at m_{ee} or $\Delta \phi_{ij}$

Differential Distributions (cont.)

Invariant mass of the two leptons m_{ee}


Light mediator

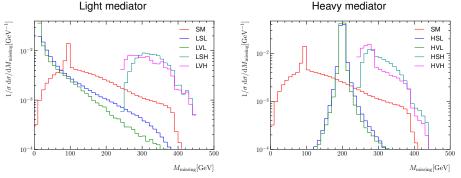
- Light mediator (L••) scalar (LS•) suppressed compared to vector exchange (LV•) at large mee
- Heavy mediator (H••) impact of mass significant for fixed DSP mass

Differential Distributions (cont.)

Rapidity difference of the two leptons Δy_{ee}

 Light mediator (L••) scalar (LS•) suppressed compared to vector exchange (LV•) at large Δy_{ee}

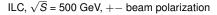
- Heavy mediator (H••) vector-scalar hierarchy at large Δy_{ee} still holds despite heavy mass
- \Rightarrow Polarised beams and vector mediator: S/B \sim 27% at large Δy

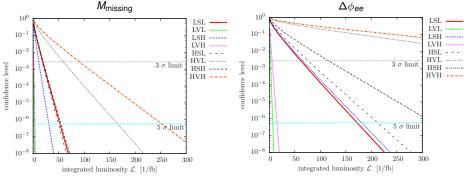


Differential Distributions (cont.)

Invariant mass of missing momentum M_{missing} (lower bound: 2 · DSP mass)

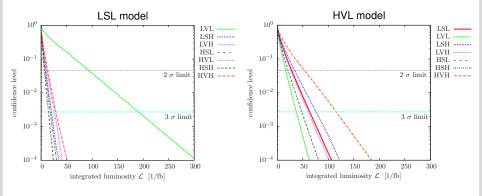
[see also Chacko, Cui, Hong]




- No distinction of scalar/vector mediator
- Pronounced peak if $m_{\phi} > 2m_{\chi}$ (H•L, on-shell mediator production)
- allows mass distinction
 - \rightarrow complementary to m_{ee} , Δy_{ee}
- for CP-even vs. CP-odd coupling study $\Delta \phi_{ee}$ in addition

Excluding Models

Binned log-likelihood hypothesis test with $CL_{\mathcal{S}}$ method


- Single variable test only
- LVL, LVH large c.s. \rightarrow 5 σ -excluded with 10 fb⁻¹
- 300 fb⁻¹ sufficient for all considered scenarios

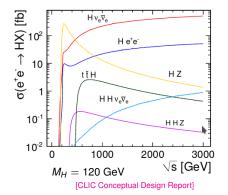
Discriminating Models

Binned log-likelihood hypothesis test with CL_S method

ILC, \sqrt{S} = 500 GeV, +- beam polarization, σ = 2.5% × $\sigma_{\text{SM bkgd.}}$

- Single variable test only
- Good prospects for distinguishing scenarios

CLIC Prospects


No detailed studies yet - work for the future

discovery reach

- biggest improvements from collider data for low-DM-mass regime
- \bullet \rightarrow collider center-of-mass energy less relevant
- \leftrightarrow improved precision for vector DM

property determination

- from vector-boson-fusion process
- → higher energy beneficial
- \bullet \rightarrow better signal-background separation
- \bullet \rightarrow increased significance

Conclusions

- mono-photon searches helpful for discovering dark sector
- competitive in particular in low-mass region
- not well suited for studying properties → VBF-like topologies
- VBF cross sections grows with energy
- polarized beams help further in SM background suppression
- differing distributions allow distinction

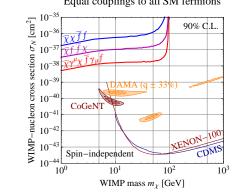
 M_{missing} : mass scale and hierarchies of mediator and DSP m_{ee} and Δy_{ee} : mediator spin

latter explained by multi-Regge kinematic limit

 \rightarrow CLIC ideal collider for studying dark sector

Detection of Dark Sector

 $1 \text{fb} \cong 10^{-39} \text{cm}^2$


Collider searches: LEP

- detection in mono-photon searches $e^+e^- \rightarrow \gamma + \not\!\! E_T$
- no official results only theorists' reinterpretation of mono-photon searches

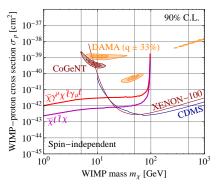
[Fox, Harnik, Kopp, Tsai]

- high sensitivity in low-mass region
- superseded by LHC results if χ couples to all fermions

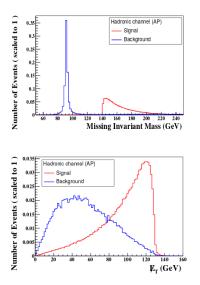
Equal couplings to all SM fermions

Detection of Dark Sector

Collider searches: LEP


- detection in mono-photon searches $e^+e^- \rightarrow \gamma + \not \in_T$
- no official results only theorists' reinterpretation of mono-photon searches

[Fox, Harnik, Kopp, Tsai]


- high sensitivity in low-mass region
- superseded by LHC results if χ couples to all fermions
- still competitive if χ couples to leptons only

 $1 \text{fb} \cong 10^{-39} \text{cm}^2$

Couplings to leptons only

Another useful variable

- studied scenario:
 Higgs portal with m_{DM} > m_H/2
- here: $m_{\rm DM}=$ 70 GeV, $\sqrt{s}=$ 350 GeV
- main channel: ZH associated production
- main backgrounds: ZZ production, W-fusion
- missing invariant mass provides good separation power
- need to know \sqrt{s} \rightarrow only possible at e^+e^- collider