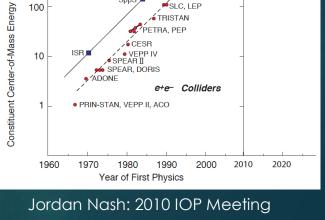


CERN/Thales meeting High Efficiency Klystron R&D

... setting the scene

Erk Jensen, CERN

13-April-2017 Meeting at CERN


... look 20 years ahead ...

LHC is scheduled to have integrated $\approx 3 \text{ ab}^{-1}$ by then. I guess we know some new physics by then! \rightarrow

The next large HEP collider project will be close to completion or operating (LC?, NCRF or SRF?) – decision expected around 2020 (based on LHC results from LHC Run2).

... in Europe:

- We'll have the next round of the European Strategy for High Energy Physics in 2019/20.
- Even without too much speculation, it is clear that the community should prepare the next possible post-LHC forefront machine(s):
- Quote from ESG 2013: "Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14 TeV will be available."
- This should be ambitious but in reach; candidates (guesswork):
 - ► toward a $\sqrt{s} \approx O(100 \text{ TeV})$ circular proton collider (FCC, possibly with HE-LHC as intermediate step)
 - ► toward a $\sqrt{s} \approx O(10 \text{ TeV})$ linear lepton collider (?, possibly with a $\sqrt{s} \approx 380 \text{ GeV}$ LC as intermediate step)
- This should guide the definition of an R&D program...

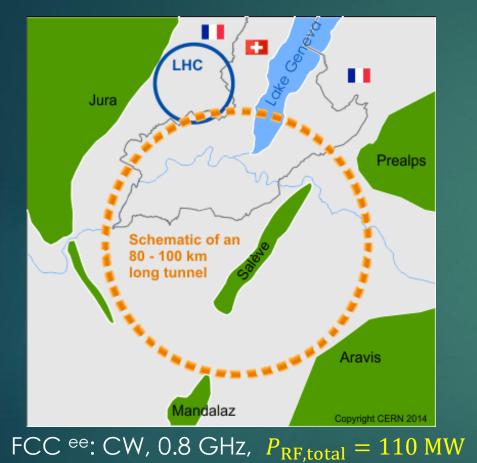
THE ENERGY FRONTIEF

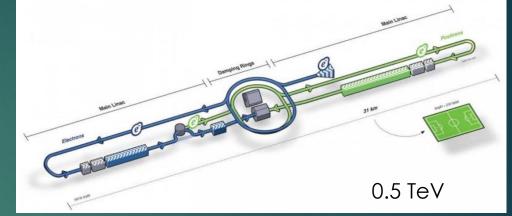
Hadron Collider

1000

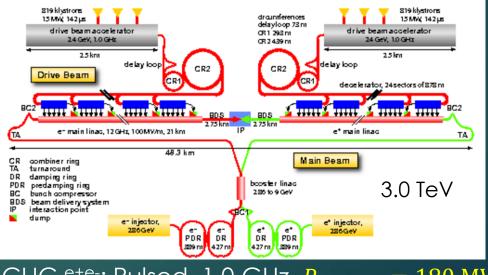
(GeV)

NC RF


- X-band technology (CLIC, but also for light source and medical applications)
- 750 MHz RFQ (4th sub-harmonic of S-band)
- S-band, L-band (e.g. S-band BW structure to follow the RFQ for hadron therapy)
- New fabrication techniques


SC RF

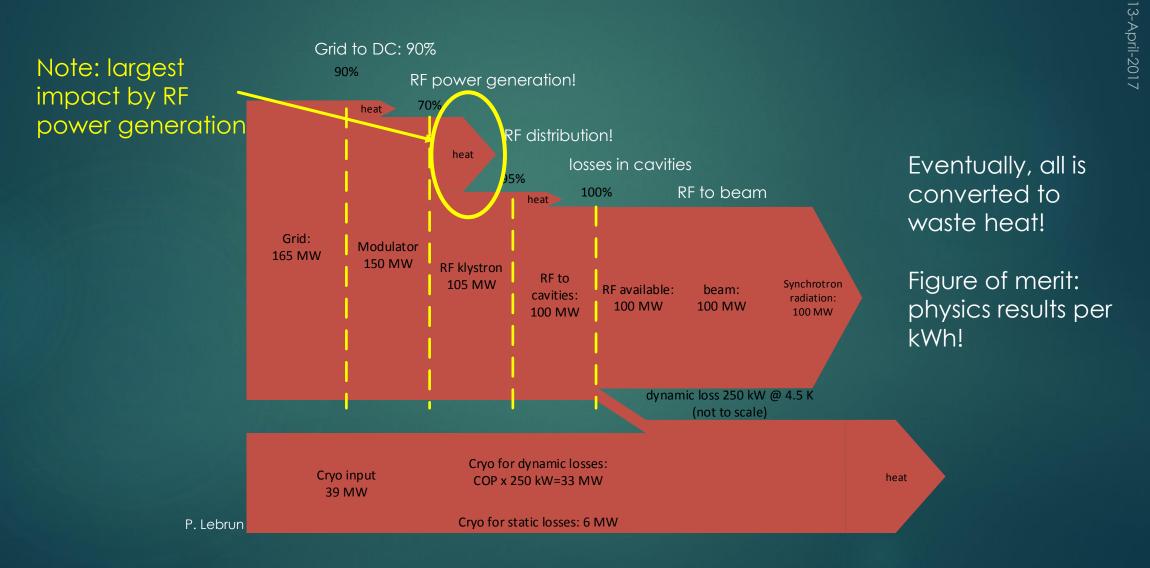
- CERN: complementary to US focus: Thin film technologies
- Deflecting cavities (HL-LHC crab cavities)
- ▶ toward FCC-ee: 100 MW CW (sic!)
- RF Power generation (energy efficiency is a must!)
 - ► Klystrons
 - ► IOTs MB-IOT (ESS)
 - Solid state
- RF systems
 - High-availability
 - What's going to replace VME?


Average RF power needs

Future large scale colliders

ILC e+e-: Pulsed, 1.3 GHz, P_{RF,total} = 88 MW

CLIC e^{+e-}: Pulsed, 1.0 GHz, $P_{\text{RF,total}} = 180 \text{ MW}$


5

Motivation: FCC Parameters

CERN
6

						_
	FCC-hh	Z	Z	W	H	tī
Beam energy [GeV]	eV] 50,000 45.6		5.6	80	120	175
Beam current [mA]	0.5	1450		152	30	6.6
Bunches / beam		30180	91500	5260	780	81
Bunch spacing [ns]	25	7.5	2.5	50	400	4000
Bunch population [10 ¹¹]	1.0	1.0	0.33	0.6	0.8	1.7
Crossing angle at IP [mrad]		30				
Bunch length [mm] (total)	300	6.7	3.8	3.1	2.4	2.5
Energy loss / turn [GeV]		0.03		0.33	1.67	7.55
Total RF voltage [GV]	0.032	0.4	0.2	0.8	3	10
RF frequency [MHz]		400				
cells×cavities×beams	1×25×2	1×150×2	1×75×2	2×150×2	2×400×2	2×1340
Luminosity/IP for 2IPs [10 ³⁴ cm ⁻² s ⁻¹]	530	207	89.4	19.1	5.1	1.3
SR power (total) \approx total RF power [MW]	5	100				
Electric power for RF [MW]	≈ 10	≈ 165				
Total cryogenic power [MW]	0.4	2	2	5	23	39

Energy conversion efficiencies

RF Power needs

- Future (large) HEP facilities need hundreds of MW RF power!
- Maximizing efficiency will ...
 - Image: minimize consumption (cost, e.g. 200 MW, 5000 h/year, €50/MWh means €50M/y!)
 - ▶ ... minimize installation (power grid, PCs, HVAC ...)
 - … minimize reject heat (waste) and its impact on environment!
 - ... allow developing technology for efficient power conversion at large
- RF generation (efficiency in the order of 50%) is a large contributor to inefficiency – an improvement here will have significant impact.

