130th LHCC meeting – Open Session
CERN - 10 May 2017

ALICE Status Report

Livio Bianchi
University of Houston
Detector maintenance and running
Most detectors profited of this long technical stop for maintenance activities

TRD:
- Xenon recuperation
- Repair broken optical connections
- Wiener PS firmware upgrade campaign

TPC:
- Inspection of TPC inner CO2 volume (guard ring current)
- FEC replacement
- Gas back to neon

TOF:
- Displace TOF7 (DC/DC problem)
- Replace DC/DCs and TRMs on several modules

EMCAL:
- SRU displacement
- Replace several FEC

PHOS:
- Reprogram 5 problematic TRUs, exchange the broken cable for LED and investigate new version of SRU firmware
- Recover 10 FECs in M4

PMD:
- Repair several FEC on CPV side (detector in parking position)

MTG:
- Change all the 2304 connectors of the FET (Front-End Test) distribution cables on the RPCs

AD:
- Shielding to protect ADA from background
- Replace 3 PMTs
- New coax cables ADC
Optimization: TOF calibration

Large/small analogic signals cross FEE threshold at different times
↓
digital signal emitted at different times
↓
time-amplitude correlation (slewing)

BEFORE
Parametrization of the time-TimeOverThreshold on a single-chip basis (8 channels)

NOW
With higher statistics of Run2 data: channel-by channel residuals estimation

Significant improvement which will lead to smaller systematics!
ALICE detector re-start

Since mid-April: detectors active and ready to take data

Cosmic campaign during LHC re-commissioning phase

Will use cosmic data to align both central detectors and muon spectrometer
ALICE data taking special requests for 2017

- **pp reference run @ 5 TeV**
 - Request: 1000M minimum bias events
 - 128M already collected in 2015
 - Assume 1.5 kHz readout rate → 6.7 days in STABLE BEAM
 - + rare triggers (parasitically)

- **pp data-taking @ 13 TeV with ZDC**
 - Request: 100M minimum bias events with isolated bunches (μ<0.2-0.3%)
 - ~ 2-3 fills
 - ZDC constraints on half total crossing angle:
 - < +85 μrad (< -32 μrad) for positive (negative) crossing

- **pp data-taking @ 13 TeV with reduced B-field (0.2T)**
 - Could be done during the intensity ramp-up phase since solenoid magnetic field has no impact on beam operations
 - ~ 40-45 h data taking

TOP PRIORITY FOR ALICE
Several PbPb and pPb analyses affected by poor 5 TeV pp reference

Supported by LHCC.
ALICE prefers to have it in 2017
Physics results

- Pb-Pb collisions
- p-Pb collisions
- pp collisions
Resonances are powerful tools to probe the hadronic phase after chemical freeze-out
Resonances are powerful tools to probe the hadronic phase after chemical freeze-out.
Resonances in Pb-Pb

Resonances are powerful tools to probe the hadronic phase after chemical freeze-out

Lifetime [fm/c] : $\rho [1.3] < K^* [4.2] < \Lambda^* [12.6] < \Xi^0* [21.7] < \phi [46.2]$
Resonances are powerful tools to probe the hadronic phase after chemical freeze-out.

Lifetime [fm/c]: \(\rho [1.3] < K^* [4.2] < \Lambda^* [12.6] < \Xi^0 [21.7] < \phi [46.2]\)
Resonances are powerful tools to probe the hadronic phase after chemical freeze-out

Lifetime [fm/c] : \(\rho [1.3] < K^* [4.2] < \Lambda^* [12.6] < \Xi^0* [21.7] < \phi [46.2] \)
Resonances in Pb-Pb

Resonances are powerful tools to probe the hadronic phase after chemical freeze-out

Lifetime [fm/c] : $\rho \ [1.3] < K^* \ [4.2] < \Lambda^* \ [12.6] < \Xi^0 \ [21.7] < \phi \ [46.2]$
Resonances are powerful tools to probe the hadronic phase after chemical freeze-out.

Short-lived resonances exhibit suppression. Suggests elastic scattering dominant mechanism.

Lifetime [fm/c]: \(\rho \quad [1.3] < K^* \quad [4.2] < \Lambda^* \quad [12.6] < \Xi^0* \quad [21.7] < \phi \quad [46.2] \)
Net particle moments at the LHC

Net particle moments used to measure event-by-event fluctuations on the conserved (on average) charges at the phase boundary:

\[x = p - \bar{p} \]

\[\kappa_1(x) = \langle p - \bar{p} \rangle \]

\[\kappa_2(x) = \langle (p - \bar{p})^2 \rangle - \langle p - \bar{p} \rangle^2 \]

\[= \kappa_2(p) + \kappa_2(\bar{p}) - 2(\langle p\bar{p} \rangle - \langle p\rangle\langle \bar{p} \rangle) \]

\[\kappa_2(Skellam) = \kappa_1(p) + \kappa_1(\bar{p}) \]

Correlation term.

Can come from:

- Resonance decay
- Global charge conservation (baryon number, strangeness, ...)

 Difference of two Poisson distributions
Net particle moments at the LHC

Net particle moments used to measure event-by-event fluctuations on the conserved (on average) charges at the phase boundary:

\[x = p - \bar{p} \]

\[\kappa_1(x) = \langle p - \bar{p} \rangle \]

\[\kappa_2(x) = \langle (p - \bar{p})^2 \rangle - \langle p - \bar{p} \rangle^2 \]

\[= \kappa_2(p) + \kappa_2(\bar{p}) - 2\langle p\bar{p} \rangle - \langle p \rangle \langle \bar{p} \rangle \]

\[\kappa_2(\text{Skellam}) = \kappa_1(p) + \kappa_1(\bar{p}) \]

Correlation term. Can come from:

- Resonance decay
- Global charge conservation (baryon number, strangeness, ...)

Where does this difference come from?
Net particle moments used to measure event-by-event fluctuations on the conserved (on average) charges at the phase boundary:

\[x = p - \bar{p} \]

\[\kappa_1(x) = \langle p - \bar{p} \rangle \]

\[\kappa_2(x) = \langle (p - \bar{p})^2 \rangle - \langle p - \bar{p} \rangle^2 \]

\[= \kappa_2(p) + \kappa_2(\bar{p}) - 2\langle p\bar{p} \rangle - \langle p \rangle \langle \bar{p} \rangle \]

\[\kappa_2(\text{Skellam}) = \kappa_1(p) + \kappa_1(\bar{p}) \]

Difference of two Poisson distributions

Correlation term. Can come from:

- Resonance decay
- Global charge conservation (baryon number, strangeness, ...)

ALICE Preliminary, Pb-Pb \[s_{NN} = 2.76 \text{ TeV} \]

\[0.6 < p < 1.5 \text{ GeV/c}, |\eta| < 0.8 \]

\[\kappa_2(p) \neq \kappa_1(p) \]

\[\kappa_2(\bar{p}) \neq \kappa_1(\bar{p}) \]

Hint for non-Poissonianity of \(p \) and \(\bar{p} \)?
Net particle moments used to measure event-by-event fluctuations on the conserved (on average) charges at the phase boundary:

\[x = p - \bar{p} \]

\[\kappa_1(x) = \langle p - \bar{p} \rangle \]

\[\kappa_2(x) = \langle (p - \bar{p})^2 \rangle - \langle p - \bar{p} \rangle^2 \]

\[= \kappa_2(p) + \kappa_2(\bar{p}) - 2(\langle p\bar{p} \rangle - \langle p \rangle \langle \bar{p} \rangle) \]

\[\kappa_2(Skellam) = \kappa_1(p) + \kappa_1(\bar{p}) \]

Correlation term. Can come from:

- Resonance decay
- Global charge conservation (baryon number, strangeness, ...)

Model: participants fluctuation (with Poisson input) reproduces \(\kappa_2(p) \), \(\kappa_2(\bar{p}) \), \(\kappa_2(Skellam) \)

Livio Bianchi
LHCC Meeting
CERN 10 May 17

ALICE Preliminary, Pb-Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

\(0.6 < p < 1.5 \text{ GeV/c}, |\eta| < 0.8 \)

Model arXiv:1612.00702
Net particle moments used to measure event-by-event fluctuations on the conserved (on average) charges at the phase boundary:

\[x = p - \bar{p} \]

\[\kappa_1(x) = \langle p - \bar{p} \rangle \]

\[\kappa_2(x) = \langle (p - \bar{p})^2 \rangle - \langle p - \bar{p} \rangle^2 \]

\[= \kappa_2(p) + \kappa_2(\bar{p}) - 2\langle p\bar{p} \rangle - \langle p \rangle \langle \bar{p} \rangle \]

\[\kappa_2(\text{Skellam}) = \kappa_1(p) + \kappa_1(\bar{p}) \]

Correlation term. Can come from:
- Resonance decay
- Global charge conservation (baryon number, strangeness, ...)

Effect of acceptance restriction on deviation from Skellam due to global baryon number conservation.

Correlation observed is due to total baryon conservation.
LHC as a γ-Pb and γ-p collider

In ultra peripheral collisions (UPC) hadronic interactions strongly suppressed

High photon flux ($\propto Z^2$)

possible to study photo-induced reactions at highest CM energy ever

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt} \bigg|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48 \alpha_{em} Q^8} \left[xg_A(x, Q^2)\right]^2$$

J/ψ cross-section \propto (gluon density)2 in the target. If target is Pb \rightarrow shadowing
UPC: coherent J/ψ production

Forward-rapidity measurement (muon spectrometer)

100x more statistics than in Run1
Cross-section extracted in 3 y-bins.

Coherent contribution extracted in $p_T<0.25$ GeV/c.
Correction for incoherent part estimated with templates from STARLIGHT
UPC: coherent J/ψ production

Will extend this study:
- at central rapidity
- Measuring J/ψ polarization

Stringent constraint on the models
Physics results

- Pb-Pb collisions
- p-Pb collisions
- pp collisions
J/ψ VS multiplicity - p-Pb at 5.02 TeV

ALICE p-Pb $\sqrt{s_{NN}} = 5.02$ TeV

Inclusive J/ψ

- 2.03 < y_{cms} < 3.53, p-going direction
- -4.46 < y_{cms} < -2.96, Pb-going direction
- -1.37 < y_{cms} < 0.43

± 3.1% normalisation unc. not shown

Increase different when going from forward to backward rapidity

arXiv:1704.00274
J/ψ VS multiplicity - p-Pb at 5.02 TeV

At central rapidity the trend is similar to the one measured for D mesons:

Increase different when going from forward to backward rapidity
J/ψ VS multiplicity - p-Pb at 5.02 TeV

At central rapidity the trend is similar to the one measured for D mesons:

Theoretical models can now be tested across a very wide dN_{ch}/dη regime

Increase different when going from forward to backward rapidity

The precision of this measurement will improve significantly making use of Run-2 data!

arXiv:1704.00274
Physics results

- Pb-Pb collisions
- p-Pb collisions
- pp collisions
D-jets cross section in pp @ 7 TeV

Study of D-tagged jets in pp collisions: useful to constrain QCD-based models for charm production.

Important for ongoing measurements in p-Pb and Pb-Pb

ALICE Preliminary
pp, √s = 7 TeV
Charged Jets, Anti-k_T, R = 0.4, |η_jet| < 0.5
with D^0, p_T,D > 3 GeV/c

Data are described by POWHEG+PYTHIA within uncertainties

doi:10.1103/PhysRevD.85.052005

Livio Bianchi
LHCC Meeting
CERN 10 May 17
Strangeness production in pp

Transverse momentum spectra of K^0_S, Λ, Ξ and Ω measured in pp at 7 TeV as a function of charged particle multiplicity at central rapidity.

Total yields:
integrate measured spectra +
add extrapolation to $p_T = 0$

Nature Physics (2017) doi:10.1038/nphys4111
Strangeness enhancement in high multiplicity pp collisions

Nature Physics (2017) doi:10.1038/nphys4111
Strangeness enhancement in high multiplicity pp collisions

- Strangeness-related: p/π and Λ/K^0_S unaffected
- Commonly-used event generators at LHC do not reproduce the observed behavior
 (strangeness increase $\Leftrightarrow p/\pi$ increase)
Strangeness enhancement in pp

Strangeness enhancement in high multiplicity pp collisions

- Strangeness-related: \(p/\pi \) and \(\Lambda/K^0_S \) unaffected
- Commonly-used event generators at LHC do not reproduce the observed behavior
- Increase \(\propto \) to \(s \)-content. Hint of QGP in high multiplicity pp and p-Pb collisions?

Nature Physics (2017) doi:10.1038/nphys4111

Livio Bianchi
LHCC Meeting
CERN 10 May 17
Strangeness enhancement in pp

Strangeness enhancement in high multiplicity pp collisions

• Strangeness-related: p/π and Ω/K_0 unaffected
• Commonly used event generators at LHC do not reproduce the observed behavior
• Increase $\propto s$-content. Hint of QGP in high multiplicity pp and $p-Pb$ collisions?

Nature Physics (2017) doi:10.1038/nphys4111
Strangeness enhancement: energy dependence?

Strangeness enhancement does not depend on \sqrt{s}

Will complement this with high multiplicity triggers at 13 TeV (should reach $\sim dN_{ch}/d\eta = 50$)
Detector upgrade
High precision measurements of rare probes:
- Heavy flavour and quarkonia
- Low mass dileptons
- Jets
- Heavy nuclear states

Target **Pb-Pb luminosity:**
13 nb$^{-1}$ (10x increase in luminosity)

Continuous read-out of all minimum bias Pb-Pb interactions at a rate of 50 kHz

Online data reconstruction and compression
ITS upgrade

Pixel Sensor Chips:
- Mass production started
- PRR Nov.2016
- Production: Jan.2017-Jan.2018

HIC/Stave:
- Series production about to start
- PRR: 27 Apr 2017
- Production: Jun.2017 – Aug.2018

Pointing Resolution

- ALICE
 - Current ITS, Z (Pb-Pb data, 2011)
 - Upgraded ITS, Z
 - Current ITS, r (Pb-Pb data, 2011)
 - Upgraded ITS, r

Tracking efficiency

- ALICE
 - Current ITS
 - Upgraded ITS

- IB: X/X₀ = 0.3% ; OB: X/X₀ = 0.8%

Total weight

1.4 grams
TPC upgrade with GEMs

Operate at the 50 kHz rate
↓
no gating grid
↓
need to minimize Ion Back Flow to keep space charge distortions at a tolerable level
↓
Replace wire-chambers with GEMs
↓
New readout electronics

ROC + GEM PRR on March 10, 2017:
• Full qualification of pre-production ROCs
• Performance within design specifications
• All production sites ready
• Mass production of 40+40 ROCs started

SAMPA + FEC performance tests ongoing
Summary
Conclusions and Outlook

ALICE is delivering very high quality physics results using Run-1 and Run-2 data. Many new results in preparation for summer conferences.

The detector is back running. A cosmic campaign is ongoing while waiting for beam.

The very ambitious upgrade program for Run 3+4 is on track and is passing important milestones.

Thank you.
Hints for QGP in small systems

Livio Bianchi
LHCC Meeting
CERN 10 May 17