

Dual-Readout Calorimetry for High-Quality Energy Measurements Status report of the RD52 (DREAM) Collaboration* Roberto Ferrari

INFN – Sezione di Pavia

CERN, LHCC Open Session, May 10, 2017

*DREAM (RD52) Collaboration: Cagliari, Cosenza, Como, Pavia, Pisa, Iowa State, TTU, Korea University RD52 is a *generic* detector R&D project *not* linked to any experiment

Goal:

Investigate + eliminate the factors that prevent us from measuring hadrons and jets with similar precision as electrons, photons

And thus develop a calorimeter that is up to the challenges of future experiments in particle physics

Outline:

- New paper (hadronic performance)
- New experimental results (1 week in October 2016)
- Plans for the future

What: avoid spoiling em resolution in order to get e/h = 1 (i.e. keep e/h > 1) BUT measure f_{em} event-by-event \rightarrow eliminate effects of fluctuations in f_{em} on calorimeter performance

How:

 exploit the fact that (e/h) values for a sampling calorimeter based on scintillation light or Čerenkov light are (very) different
 (e.g. protons contribute to S but not to Č signals) calibrate separately S and Č response with electrons only

Dual-Readout w/ Sampling Fibre Calorimeters

LHCC, May 10th, 2017

RD52 DR Fibre Calorimeters

LHCC, May 10th, 2017

New RD52 Paper

Hadron detection with a dual-readout fiber calorimeter

able to reconstruct the energy of proton and pion beam particles to within a few percent at

arXiv:1703.09120v1 [physics.ins-det] 27 Mar 2017

S. Lee^m, A. Cardini^c, M. Cascella^d, S. Choi^e, G. Ciapetti^{†g}, R. Ferrari^h, S. Franchinoⁱ, M. Fraternali^f, G. Gaudio^h, S. Ha^e, J. Hauptman^j, H. Kim^m, A. Lanza^h, F. Li^j, M. Livan^f, E. Meoni^l, J. Park^m, F. Scuri^b, A. Sill^a and R. Wigmans^{a, 1} ^a Texas Tech University, Lubbock (TX), USA ^b INFN Sezione di Pisa, Italy ^c INFN Sezione di Cagliari, Monserrato (CA), Italy ^d University College, London, UK ^e Korea University, Seoul, Korea ^f INFN Sezione di Pavia and Dipartimento di Fisica, Università di Pavia, Italy ^g Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN Sezione di Roma, Italy ^h INFN Sezione di Pavia, Italy ⁱ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Germany ^j Iowa State University, Ames (IA), USA ¹ Dipartimento di Fisica, Università della Calabria and INFN Cosenza, Italy ^m Kyungpook National University, Daegu, Korea [†] Deceased Abstract In this paper, we describe measurements of the response functions of a fiber-based dualreadout calorimeter for pions, protons and multiparticle "jets" with energies in the range from 10 to 180 GeV. The calorimeter uses lead as absorber material and has a total mass of 1350 kg. It is complemented by leakage counters made of scintillating plastic, with a total mass of 500 kg. The effects of these leakage counters on the calorimeter performance are studied as well. In a separate section, we investigate and compare different methods to measure the energy resolution of a calorimeter. Using only the signals provided by the calorimeter, we demonstrate that our dual-readout calorimeter, calibrated with electrons, is

all energies. The fractional widths of the signal distributions for these particles (σ/E) scale

PACS: 29.40.Ka, 29.40.Mc, 29.40.Vj

Key words: Dual-readout calorimetry, Čerenkov light, optical fibers

¹ Corresponding author. Email wigmans@ttu.edu, fax (+1) 806 742-1182.

with the beam energy as $30\%/\sqrt{E}$, without any additional contributing terms.

Preprint submitted to Nuclear Instruments and Methods A

28 March 2017

Principles of Dual Readout Calorimetry

$$S = [f_{em} + (h/e)_{s} \times (1 - f_{em})] \times E$$
$$C = [f_{em} + (h/e)_{c} \times (1 - f_{em})] \times E$$

$$\cot g \theta = \frac{1 - (h/e)_s}{1 - (h/e)_c} = \chi$$

 Θ , χ independent of both: *i*) energy (!) *ii*) type of hadron (!!)

$$E = \frac{S - \chi C}{1 - \chi}$$

is universally valid

Dual Readout at Work (2)

Dual Readout at Work (3)

the Rotation Method

- Fit experimental data with a straight line
- Determine coordinates of P (intersection with C=S line)
- Rotate data points about P over angle $(90^{\circ} \theta)$
- •Project data points on horizontal (S) axis

θ is independent of E
and particle type!!
Don't need this info!!

Applications of the Rotation Method

Single-Particle Hadronic Resolution

Hadronic Resolution (Pb Module) $\frac{\sigma}{E} = \frac{53\%}{\sqrt{E}} + 1.7\%$ to be corrected for: - light attenuation

- lateral leakage

jet energy resolution ~ few % at ~100 GeV

(4th Concept Detector LOI quotes $30\%/\sqrt{E}$ for jets)

Jet resolution should also be studied coupled w/ tracking information (high granularity \rightarrow *"particle-flow friendly")*

The PMT readout of the DREAM calorimeter

3

SiPM advantages:

- compact readout (no fibres sticking out)
- longitudinal segmentation possible
- operation in magnetic field
- larger light yield (# of Čerenkov p.e. limits resolution)
- very high readout granularity \rightarrow particle flow "friendly"

SiPM (potential) disadvantages:

- signal saturation (digital light detector)
- cross talk between Čerenkov and scintillation signals
- dynamic range
- instrumental effects (stability, afterpulsing, ...)

First SiPM RD52 Readout

MODULE 1: *All channels equipped* (32 scintillating + 32 Čerenkov fibers) MODULE 2: *Only Čerenkov fibers connected* (32)

First SiPM RD52 Readout

Event displays in $8x8 \text{ mm}^2 \text{ regions} \rightarrow$ Showering electrons deposit 50% of their energy in this region

Centered	Off-centered				
		,			
	2	2			
	3	3			
	4	4			
		- 1500			
		7, 100			
		8			
		1 2 3 4 5 6 7 8			
40 GeV electrons		A muon			

A short summary of the data taking conditions:

 \triangleright two modules, both based on the array with 50 μ m pitch cells:

- module 1: both scintillating and Cherenkov fibres connected to the pixels of the array
- module 2: Cherenkov fibers only were connected

driven by two main reasons:

- the saturation of the sensors connected to the scintillating fibres
- the study of the optical cross talk

recorded data:

Module I	Module 2				
	1	e *:			
20 GeV (> 54.000 events)		1.	20	GeV	(> 178.000 events)
40 GeV (> 146.000 events)		44.	40	GeV	(> 300.000 events)
♣ 60 GeV (> 173.000 events)		dip.	60	GeV	(420.000 events)
ψ μ ⁺ : 180 GeV (> 100.000 events)		1	80	GeV	(340.000 events)
		dip.	100	GeV	(300.000 events)
4	P	μ^+	180) GeV	(400.000 events)

Optical Cross Talk and Signal Saturation

Čerenkov light yield ~ 60-70 p.e./GeV (2 x PMT) ~ 25% optical x-talk to neighboring SiPM.s ~ 8% non-linearity due to saturation

2017 RD52 Plans

a) Eliminate x-talk by using separate SiPM arrays crucial issue: fibre feed-thru

b) Eliminate / strongly reduce saturation effects by using SiPM with 4 x larger dynamic range (4 x smaller pixel area)

c) Possibly develop an electronic board to integrate up to 9 sensors in a single readout channel

Goals 2017 beam tests

In addition, we want to test two new full-scale copper-fiber calorimeter modules, built at Iowa State University (standard PMT readout)

For both components of our experimental program, we request electron beams, with energies from 10 - 100 GeV *INFN initiative for R&D for future accelerators (RD_FA): open a 3-year (2018-2020) working package on DR* → first step: simulate a conceptual detector (IDEA) for CepC/FCCee

Activities already started (within RD52 groups and plans) ... collaboration growing

> Setting up collaboration with CepC people in order to include the DR option in CepC CDR

Setting up collaboration with FCCee people (Gigi, Mogens)

Need a CERN official project!

Fully simulate a testbeam copper module (w/ full optical propagation and conversion, at least for Čerenkov light)

Implement a 4π geometry description for the IDEA detector \rightarrow estimate W/Z resolution capability

Evaluate combined performance w/ a $2X_0$ *preshower (Si or MPDG) detector in front*

Copper grooving still an issue !

We don't have yet a viable solution for massive production ...

Thinking about bronze

Other issues:

When/How build a full-containment detector ? When/How develop projective geometry ? About the read-out of $O(10^3-10^4)$ fibres ?