Update on PACMAN effects

X. Buffat, T. Pieloni, A. Gorzawski

Orbit effects : Impact on luminosity

> Due to the symmetry between the two beams, the offset at the IP result in head-on collision, but the luminous region is displaced transversally with a bunch by bunch spread of 0.4 $\sigma(\rightarrow 3$ to $5 \mu \mathrm{~m})$

- With the worst phase advances between IPs
 ($\varphi_{1}=1 / 4+Q / 2+n / 2, \varphi_{2}=\varphi_{1}+m / 2$), this can lead to a full separation of 0.4σ between the beams in other IPs \rightarrow 4% reduction of the luminosity of PACMAN bunches $\rightarrow \sim 0.6$ \% reduction of the total luminosity
> If needed it could be mitigated with equal phase advances between IPs in the two beams respectively
, The maximum orbit spread is proportional to $1 / d$, with d the normalised separation at the LRs
3 m and $250 \mu \mathrm{rad}$ in IP8 $\rightarrow 0.10 \sigma$
10 m and $170 \mu \mathrm{rad}$ in IP2 $\rightarrow 0.08 \sigma$

Self-consistent computations, IPs 2 and 8
> Long-ranges in IP8 result in separations in the horizontal plane $\sim 0.10 \sigma$ \rightarrow Close to the worst phase advance wrt the main IPs
, Long-ranges in IP2 result in separations in the vertical planes well below 0.08σ

Self-consistent computations, offset levelling in IPs 2 and 8
, The separation in IPs 1 and 5 due to the levelling with an offset in IPs 2 and 8 is negligible even
 at the maximum of the coherent kick, due to a favourable phase advance

Filling schemes - BCMS

Nominal
BCMS

. Maximum orbit shifts are identical with the BCMS beams, but the number of PACMAN bunches is higher \rightarrow slightly higher impact on luminosity

Filling schemes - 8b4e
All bunches are PACMAN bunches
\rightarrow Similar bunch by bunch spread due the higher intensity
\rightarrow Higher impact on luminosity
, Exact impact to be evaluated including the orbit optimisation, nevertheless the order of magnitude will remain ~ 1 \%

- The orbit effect is defined by the separation in the crossing plane \rightarrow With a flat optics the effect is reduced by 14% due to the larger normalised separation

Nominal

