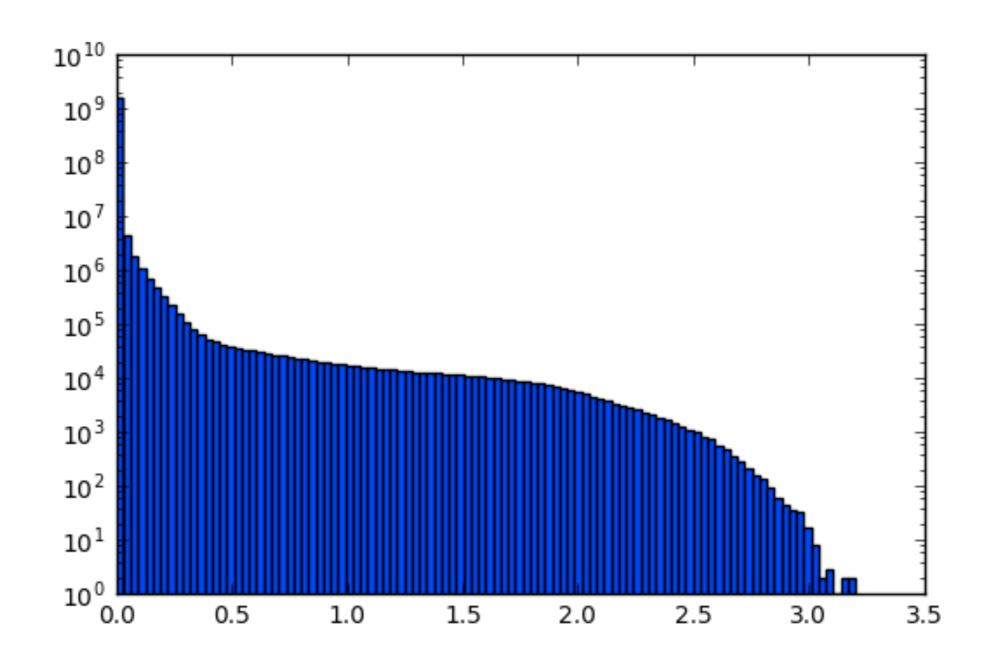

DNN normalization in DLKit study

Ryan Reece (UCSC)


ryan.reece@cern.ch

with Amir Farbin (UTA)

ECAL x-data

Maximum 3.2 with our old normalization factor of 1/150.

New nonlinear normalization

- I setup a hyper-parameter scan over width, depth, and the ECAL and HCAL normalization types, trying the
 - I/I50 past default
 - I/480 (I/3.2 * past default)
 - "nonlinear" function suggested by Amir below:

$$X' = \tanh(\operatorname{sign}(X)\ln(\operatorname{abs}(X) + 1)/2)$$

Scan results

Model Name e_AUC Pi0_AUC ChPi_AUC Gamma_AUC	Width	Depth	Epochs
Width=256 Depth=1 ECALNorm=480.4 HCALNorm=1235.5 0.5000 0.5000 0.5000 0.5000	256	1	18
Width=32 Depth=4 ECALNorm='nonlinear' HCALNorm='nonlinear		32	4
0.9948 0.9458 0.9986 0.9530 Width=128 Depth=3 ECALNorm='nonlinear' HCALNorm=150.0		128	3
0.9924 0.9466 0.9982 0.9535		120	3
Width=512 Depth=3 ECALNorm='nonlinear' HCALNorm='nonlinea 0.9952 0.9478 0.9994 0.9527	r'	512	3
0.9952 0.9478 0.9994 0.9527 Width=64 Depth=4 ECALNorm='nonlinear' HCALNorm='nonlinear		64	4
0.9952 0.9501 0.9989 0.9559			
Width=64 Depth=3 ECALNorm='nonlinear' HCALNorm='nonlinear	•	64	3
0.9909 0.9504 0.9977 0.9541 Width=128 Depth=3 ECALNorm='nonlinear' HCALNorm='nonlinea	r'	128	3
0.9953 0.9514 0.9992 0.9566			
Width=512 Depth=4 ECALNorm='nonlinear' HCALNorm=150.0		512	4
0.9932 0.9520 0.9980 0.9567			

The best models tend to use the "nonlinear" normalization.

Thoughts

- Using a nonlinear normalization function should be equivalent to using a particular nonlinear activation function at the first layer.
- So maybe one would want to use the linear I/max normalization and push the nonlinearities to the activation, but maybe this is a nice combination in the end.
- In CaloDNN/Models.py, the Fully3DImageClassification model we are using uses *relu* normalization for every layer except the last, where it uses *softmax*.