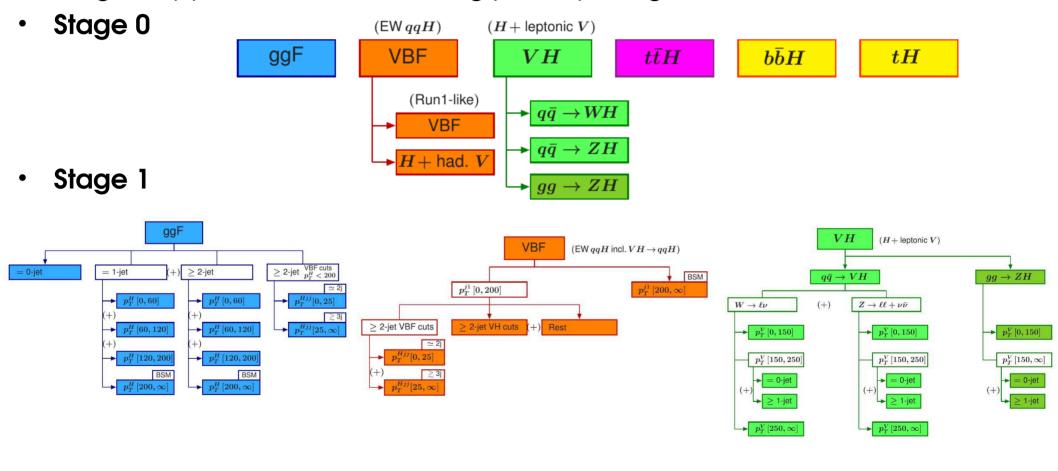
ATLAS Experience with STXS Measurements

Nicolas Berger (LAPP)

Fiducial and Template Cross-section Subgroup

- New subgroup within the WG2 structure, for issues related to
 - Fiducial cross-sections
 - Differential cross-sections
 - Simplified template cross-sections (STXS)

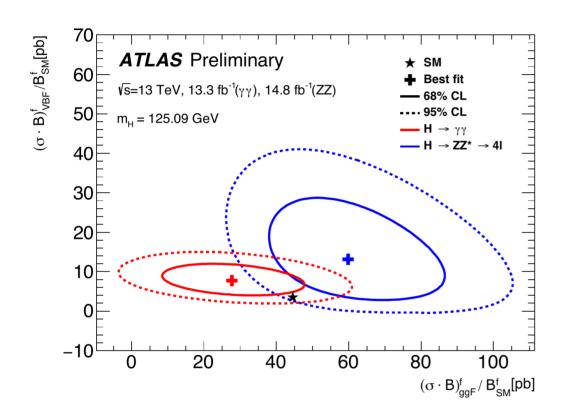
Conveners:

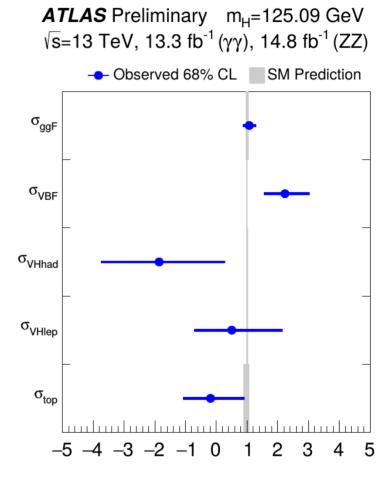

- Frank Tackmann (Theory)
- Predrag Milenovic (CMS)
- Nicolas Berger (ATLAS)

Mailing lists

- Group discussions: Ihc-higgs-prop-fidSTXS@cern.ch
- Contact with conveners: lhc-higgs-fidSTXS-convener@cern.ch
- TWiki: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGFiducialAndSTXS

Introduction

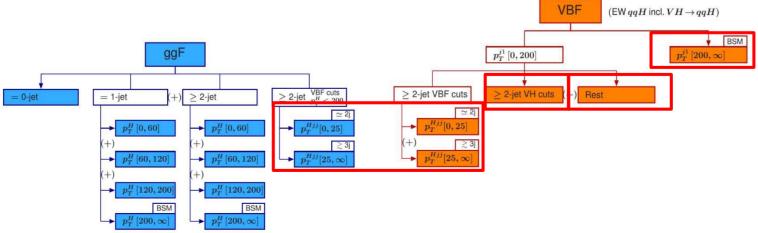

- STXS are described in YR4 (Section III.2), provide truth-level splitting of Higgs production processes
- Staged approach with increasingly fine splittings


 Stage-0 and Stage-1 classifications implemented by Jim Lacey in a common RIVET tool now maintained by LHCHXSWG.

ATLAS Measurements

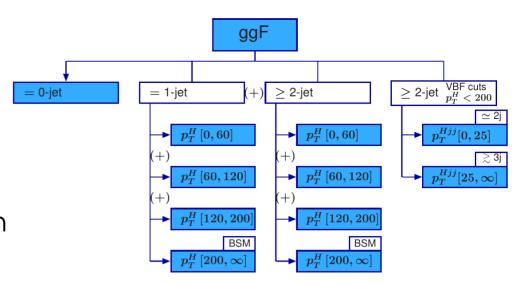
• ATLAS has reported **Stage-0** results in the 2016 Higgs Combination ($H \rightarrow \gamma \gamma + ZZ$)

 Aiming for Stage-1 for upcoming measurements


Parameter value norm. to SM value

 In this talk: summary of issues encountered, which would benefit from discussions with the wider community

Stage-1 Measurements


STXS separates "production modes" \Rightarrow full Stage-1 measurement requires to disentangle e.g. ggF/VBF. Issues e.g. in

- VBF-like phase space (gg2H_JET3, gg2H_JET3VETO, VBF_JET3, VBF_JET3VETO)
 - → Only weak discrimination through loose vs. tight VBF-like selections.
- VBF_REST: (56% of total VBF)
 - → Corresponds to parts of VBF phase space that strongly overlap with ggF ⇒ Difficult to isolate
- VBF_BSM: Large overlap with ggF+jets
- VBF_VH2JET: Large overlap with ggF+2 jets

Merging truth bins

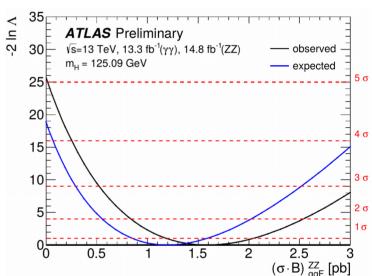
- Stage 1 provides already a quite fine-grained description of Higgs production
- Not all bins can be measured with high precision, especially in single channels

Two main issues:

- Truth bins with ~ no sensitivity from experimental measurement (e.g. no matching experimental selection)
- Heavily correlated truth bins i.e. bins that cannot be easily disentangled from the measurements.
 - e.g. VBF-like ggF (2j and 3j) and true VBF (2j and 3j)
 ⇒ In principle, 4 measurements in the "VBF-like" region

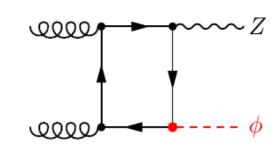
Possible solutions:

- Provide results in "rotated" basis (e.g. (A+B, A-B)) in which correlations are weaker
- Merge bins

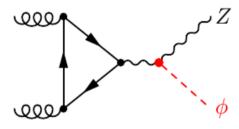

When to Merge?

- ATLAS approach: merge truth bins when
 - 1. There is no reco bin matching the truth bin
 - 2. The STXS POIs for 2 truth bins are >~80% correlated in a fit to Asimov
- Open points:
 - Is the 80% threshold appropriate?
 - For 1., some arbitrariness in how to merge (which STXS bins to "attach" the unconstrained bin to).
 - ⇒ Follow recommendations provided within the STXS framework ("(+)" in the diagrams)
 - → In 2., some arbitrariness also in the case of intercorrelations between 3 or more bins (e.g. ggF/2j, ggF/3j, VBF/2j and VBF/3j)
 - Possibility to also report unmerged results for case 2., if the correlation matrix is well defined (~Gaussian measurements).
 - → Would this be useful? (given the large correlations)

Non-Gaussian Behavior


Baseline idea:

- Experiments report central values + covariance matrix for a set of STXS
- Further interpretation performed based on these inputs
- Some measurements in 2016 Higgs Combination already not fully Gaussian
 - → Will remain an issue even for larger datasets, since STXS staging designed to give finer splits with more data



- Could lead to biases in particular for
 - Very non-Gaussian measurements (e.g. BSM bins)
 - Measurements with large correlations (e.g. ggF/VBF)
- Could be useful to perform checks by comparing
 - Interpretations based on reparameterizing the full experimental likelihood
 - Interpretations using covariance matrix propagation

gg→ZH

- STXS classification is final-state--based
 - \Rightarrow gg \rightarrow ZH (14% of pp \rightarrow ZH at 13 TeV) distributed as:
 - gg→Z(II)H ~ gg→HII ⇒ classified within "VH" (HII) in STXS
 - $gg \rightarrow Z(qq)H \sim gg \rightarrow Hqq$ ⇒ classified within ggF, same as ggF+2jets
 - gg→ZH can be seen as part of EW corrections to ggF
 ⇒ should be included in ggF in any case
 - gg initial state \Rightarrow HO corrections probably closer than to e.g. $qq \rightarrow ZH$

Remarks

- "Triangle graphs" not directly related to (Higgs) ggF diagrams
 - ⇒ Different interpretation in terms of modified couplings
 - \rightarrow already implemented in κ -framework parameterization since Run 1.
- Tiny fraction of gg→Hqq ⇒ will be swamped by pure-QCD processes
 - \Rightarrow Could have a separate STXS bin with an $|m_{aa} m_z|$ cut, within ggF?

ggF QCD Uncertainties for Stage-1 STXS

- Using "Interim 2017" uncertainty model agreed upon after last month's dedicated WG1 meeting
 - Extension of resummed ST described in YR4:

$$\Delta_{\mu},\,\Delta_{\phi},\,\Delta_{0/1}\,\,\Delta_{1/2}\,\,\Delta_{\mathsf{VBF,2j}}\,\,\Delta_{\mathsf{VBF,3j}}\,\,\Delta_{\mathsf{pTH,60}}\,\,\Delta_{\mathsf{pTH,120}}\,\,\Delta_{\mathsf{mt}}$$

Uncertainty values obtained from NNLOPS

Large at high p_T^H , parameterizes the uncertainty in the p_T^H >200 GeV cut

In ATLAS, implemented as NNLOPS weight variations (TruthWeightTools-01-04-00)

(ross secti	ons and fractiona	l uncerta	inties								
STXS	sig stat	mu	res	mig01	mig12	VBF2j	VBF3j	pT60	pT120	qm_top	Tot
Incl	48.52 +/- 0.00	+4.6%	+2.1%	-0.0%	-0.0%	+0.3%	-0.0%	+0.0%	+0.2%	+0.2%	+5.1%
FWDH	4.27 +/- 0.01	+4.5%	+1.9%	-0.5%	-0.2%	+0.0%	+0.0%	-0.3%	-0.1%	+0.0%	+4.9%
VBF_J3V	0.27 +/- 0.00	+0.0%	+0.0%	+0.0%	+0.0%	+20.0%	-32.0%	-1.6%	+1.1%	+0.1%	+37.8%
VBF_J3	0.36 +/- 0.00	+0.0%	+0.0%	+0.0%	+0.0%	+20.0%	+23.5%	-0.2%	+2.5%	+0.2%	+31.0%
= 0 J	27.25 +/- 0.03	+3.8%	+0.1%	-4.1%	+0.0%	+0.0%	+0.0%	+0.0%	+0.0%	+0.0%	+5.6%
=1J_0-60	6.49 +/- 0.01	+5.2%	+4.5%	+7.9%	-6.8%	+0.0%	+0.0%	-4.8%	-1.6%	+0.0%	+13.5%
=1J_60-120	4.50 +/- 0.01	+5.2%	+4.5%	+7.9%	-6.8%	+0.0%	+0.0%	+4.8%	-0.9%	+0.0%	+13.4%
=1J_120-200	0.74 +/- 0.00	+5.2%	+4.5%	+7.9%	-6.8%	+0.0%	+0.0%	+10.0%	+10.1%	+0.5%	+18.9%
=1J_200->	0.15 +/- 0.00	+5.2%	+4.5%	+7.9%	-6.8%	+0.0%	+0.0%	+10.0%	+14.0%	+10.5%	+23.7%
>=2J_0-60	1.22 +/- 0.01	+8.9%	+8.9%	+4.4%	+18.2%	+0.0%	+0.0%	-5.9%	-1.6%	+0.0%	+23.3%
>=2J_60-120	1.86 +/- 0.01	+8.9%	+8.9%	+4.4%	+18.2%	+0.0%	+0.0%	-0.2%	-0.2%	+0.0%	+22.5%
>=2J_120-200	0.99 +/- 0.00	+8.9%	+8.9%	+4.4%	+18.2%	+0.0%	+0.0%	+6.6%	+10.6%	+0.6%	+25.8%
>=2J_200->	0.42 +/- 0.00	+8.9%	+8.9%	+4.4%	+18.2%	+0.0%	+0.0%	+10.0%	+14.0%	+11.8%	+30.7%
= 0 J	30.12 +/- 0.03	+3.8%	+0.1%	-4.1%	+0.0%	+0.0%	+0.0%	+0.0%	+0.0%	+0.0%	+5.6%
=1 J	12.92 +/- 0.02	+5.2%	+4.5%	+7.9%	-6.8%	+0.0%	+0.0%	-0.1%	-0.4%	+0.2%	+12.5%
>=2J	5.47 +/- 0.01	+7.8%	+7.8%	+3.9%	+16.1%	+2.3%	-0.0%	+0.4%	+2.9%	+1.1%	+20.3%
>=1J 60-200	9.09 +/- 0.01	+6.2%	+5.8%	+6.4%	+1.9%	+0.9%	+0.1%	+4.2%	+1.7%	+0.1%	+11.8%
>=1J 120-200	1.96 +/- 0.01	+6.8%	+6.5%	+5.5%	+6.9%	+1.5%	+0.4%	+8.0%	+10.4%	+0.6%	+18.5%
>=1J >200	0.58 +/- 0.00	+7.9%	+7.7%	+5.4%	+11.6%	+0.0%	+0.0%	+10.0%	+14.0%	+11.4%	+26.7%
>=1J >60	9.68 +/- 0.01	+6.3%	+5.9%	+6.3%	+2.5%	+0.8%	+0.1%	+4.6%	+2.5%	+0.8%	+12.2%
>=1J >120	2.54 +/- 0.01	+7.0%	+6.8%	+5.5%	+8.0%	+1.2%	+0.3%	+8.4%	+11.2%	+3.0%	+19.9%
>=1	18.40 +/- 0.02	+6.0%	+5.5%	+6.7%	-0.0%	+0.7%	-0.0%	+0.0%	+0.5%	+0.4%	+10.6%

Dag Gillberg

ggF QCD Uncertainties for Stage-1 STXS

Separate uncertainties on

- σ_i^{STXS,SM}: SM values of STXS cross-sections
 - \rightarrow useful e.g. for denominators in $\mu=\sigma/\sigma^{SM}$, also bin merging, see below

- $(A\times\epsilon)_{\alpha i}$ factors for each reco selection α and truth bin i
 - Useful to extract STXS from reco yields
 - Typically smaller than uncertainties on $\sigma_{\!\scriptscriptstyle i}^{\scriptscriptstyle \sf STXS,SM}$
 - One uncertainty per (reco, truth) pair but smaller truth contributions hard to obtain due to limited MC stats

$$N_{\alpha}^{reco} = \sum_{i} (A \times \epsilon)_{\alpha i} \sigma_{i}^{STXS}$$

QCD Uncertainties for Merging STXS bins

STXS can be merged in some cases (see next slides).

- e.g.
$$\sigma_{VBF} = \sigma_{VBF,2j} + \sigma_{VBF,3j}$$

In general need to reexpress the original STXS in terms of the merged one:

$$\sigma_{VBF,2j} = \left| \frac{\sigma_{VBF,2j}^{SM}}{\sigma_{VBF}^{SM}} \right| \sigma_{VBF} \qquad \sigma_{VBF,3j} = \left| \frac{\sigma_{VBF,3j}^{SM}}{\sigma_{VBF}^{SM}} \right| \sigma_{VBF}$$

 \Rightarrow Requires to include extra uncertainties on the value of the ratios.

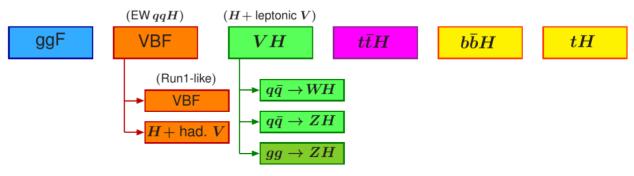
- No effect if analysis is not sensitive to the split (i.e. same $(A \times \varepsilon)$ for 2j and 3j)
- Some effect in general: for 2j/3j merging, extra ~20% uncertainties in VBF-like selections

"Stage 0.5"

- Stage-1 results are already quite fine-grained (especially e.g. for ggF)
 - → good for experts, but need to also show where we approach SM sensitivity
- Some suggestions:
 - Merge bins with small cross-sections (excluding the BSM bins)
 - Merge bins with **non-significant signal** (e.g. require $\delta\sigma/\sigma^{SM}$ < 2 in reported bins)
- Specifically for ggF
 - Merge all p_T^H bins for a given jet bin (except perhaps BSM bins), as suggested in the STXS merging guidelines
 - Is this direction preferable over merging N_{iets} bins?
- Is it useful to uniformize a merged "Stage 0.5" scheme?
- Is it still useful to report full Stage-1 results in addition to these?

bbH and tH

- bbH and tH included in the Stage 0 classification, but currently little or no sensitivity in the analyses
- **bbH**: STXS (Α×ε) values almost identical to ggF


$$\sigma_{tH}^{\gamma\gamma} = \frac{\sigma_{tH} \times \Gamma(H \to \gamma \gamma)}{\Gamma_{H}}$$

- Fix to SM? (optionally, up to theory uncertainties)
 - \rightarrow Leads to constraints on BR(H \rightarrow X)
 - \Rightarrow "measurement" of $\Gamma_{\!_{\! H}}$ e.g. within κ models.

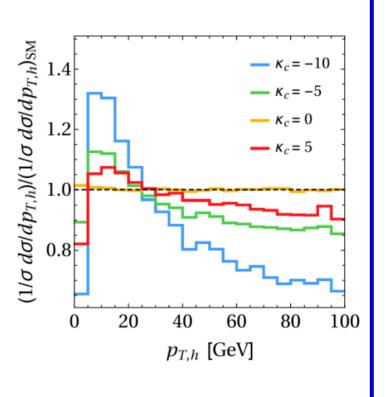
$$\frac{\sigma_{VBF}^{\gamma\gamma}}{\sigma_{tH}^{\gamma\gamma}} = \frac{\kappa_V^2}{\sigma_{tH}^{SM}} \qquad \sigma_{VBF}^{ZZ} = \frac{\kappa_V^4}{\kappa_H^2}$$

$$\kappa_H^2 = \frac{1}{\sigma_{VBF}^{ZZ}} \left(\frac{\sigma_{VBF}^{\gamma \gamma}}{\sigma_{tH}^{\gamma \gamma}} \right)^2$$

- Proposal:
 - Merge bbH with ggF
 - In Stage 1, distribute into sub-bins according to SM acceptance values?
 - Merge tH with ttH

Low-p_T binning

• Recent proposal to use p_T^H distribution to constraint light-quark Yukawas (Phys. Rev. Lett. 118, 121801 (2017), JHEP12(2016)045)


From A. Azatov

- Modifications of the light quark Yukawa couplings modify the differential distributions.
- Sudakov's dilogarithms 1606.09253 enhance the production cross-section

$$\sim k_Q rac{m_Q^2}{m_h^2} \ln^2 rac{p_\perp^2}{m_Q^2}$$

modifications are especially important in the region $m_Q \ll p_{\perp} \ll m_h$.

The main contribution appears from the interference with the top quark loop, which scales as y_Q not y_Q².

Would it be feasible/useful to add a new p_{τ}^{H} bin boundary at 10-20 GeV?

Discussion