Fitting EFT coefficients from STXS bins

Chris Hays, Gabija Žemaitytė

University of Oxford

2017 05 08

Chris Hays, Gabija Žemaitytė (University of C Fitting EFT coefficients from STXS bins

2017 05 08 1 / 14

Overview

Aim:

- ► Constrain EFT coefficients with data: STXS measurements ↔ EFT equations.
- Produce library of EFT equations: can be used for any stat. analysis, publicly available.

Plan:

- ► Define order and truncation of EFT.
- Choose EFT basis.
- ► Use a generator for STXS cross sections.

- Cross sections are measured in each STXS truth bin, with correlations.
- STXS bins are divided into production modes and branching ratios of the decay:
 - ▶ production: ttH, WH, ZH, VBF, ggf;
 - decay: hZZ, h $\gamma\gamma$, + others.
- Decay processes are inclusive.
- Decay is expressed as a ratio, e.g. $\frac{BF(H \rightarrow \gamma \gamma)}{BF(H \rightarrow ZZ)}$.
- Production processes are further divided into kinematic bins.

EFT expansion

Lagrangian:

$$L = SM + c_i^{(6)} O_i^{(6)} \Lambda^{-2} + c_i^{(8)} O_i^{(8)} \Lambda^{-4}$$

We take only up to dimension 6 operators:

$$\sigma = |\mathbf{M}\mathbf{E}_{SM}|^2 + \mathbf{M}\mathbf{E}_{SM}\mathbf{M}\mathbf{E}^{(6)} + |\mathbf{M}\mathbf{E}^{(6)}|^2$$

We keep |*ME*⁽⁶⁾|² because while it has Λ⁻⁴ dependence it is the leading order term that is not dependent on the SM amplitude.
 Express σ in terms of EFT couplings (quadratic in coefficients):

$$\sigma = SM + B_i c_i^{(6)} + D_{ij} c_i^{(6)} c_j^{(6)}$$

The $|ME^{(6)}|^2$ term can be dropped by neglecting the D_{ij} coefficients

First-pass EFT model:

- HEL model: LO implementation of SILH basis excluding 4-fermion operators
- has 39 operators
- generate with Madgraph
 - shower with Pythia8 unless the process is inclusive

$$\sigma = SM + B_1c_1 + D_{11}c_1^2 + B_2c_2 + D_{22}c_2^2 + D_{12}c_1c_2$$

Use NP² == syntax and $c_1 = c_2 = 1$:

▶ SM, B_i and D_{ij} for i = j get directly:

$$\begin{cases} NP^2 == 0 : \sigma_1 = SM \\ NP^2 == 1 : \sigma_{B1} = B_1, \ \sigma_{B2} = B_2 \\ NP^2 == 2 : \sigma_{D11} = D_{11}, \ \sigma_{D22} = D_{22} \end{cases}$$

- Extracting D_{ij} for $i \neq j$:
 - ◀ generate a sample with NP²==2 syntax;
 - then $\sigma = D_{11}c_1^2 + D_{22}c_2^2 + D_{12}c_1c_2$;
 - ◄ subtract D_{11} and D_{22} calculated previously.

$$\frac{\mathsf{BF}(\mathsf{H} \to \gamma \gamma)}{\mathsf{BF}(\mathsf{H} \to \mathsf{ZZ})}$$

From MadGraph we get numerator and denominator as a polynomial:

$$\frac{A + B_i c_i + D_{ij} c_i c_j}{F + G_j c_j + H_{ij} c_i c_j}$$

We may expand as follows:

$$\frac{A + B_i c_i + D_{ij} c_i c_j}{F + G_j c_j + H_{ij} c_i c_j} \approx \frac{A}{F} \left(1 + \frac{B_i c_i}{A} + \frac{D_{ij} c_i c_j}{A} - \frac{G_j c_j}{F} - \frac{H_{ij} c_i c_j}{F} - \frac{G_j B_i c_i c_j}{AF} \right)$$

Data vs MC

Detector cannot see intermediate particles while we can specify them in MC. ZH as in Yellow Report (left) vs same final particles (right):

Effect of removing/ adding diagrams:

- changes cross-section;
- changes active BSM couplings (i.e. new diagrams bring new couplings).

SM samples σ/pb comparison: σ/pb of all intermediate particles vs σ/pb with intermediate particles written in the brackets:

- tth: 0.400 vs 0.413 (g).
- wh: 0.0719 vs 0.0729 (W).
- zh: 0.0507 vs 0.0516 (Z).
- **h** $\gamma\gamma$: $1.04 \cdot 10^{-5}$ no other diagrams.
- hzz: $4.72 \cdot 10^{-8}$ vs $4.23 \cdot 10^{-8}$ (Z).

Fractional uncertainty: 0.004.

Adding/removing diagrams: hZZ

- Full sample: $4.72 \cdot 10^{-8}$ GeV
- Only Z in s-channel: $4.23 \cdot 10^{-8}$ GeV
- Only Z and γ in s-channel: $4.55\cdot 10^{-8}$ GeV

Fractional uncertainty: 0.004.

Adding/removing diagrams: BSM couplings change

Number of BSM couplings: removed intermediate particles vs all:

- Production:
 - ▶ tth: 9 vs 28.
 - wh: 10 vs 13.
 - ▶ zh: 23 vs 29.
- Decay:
 - ▶ $h\gamma\gamma$: 2 in both.
 - hzz: 17 in both.

Process:
$$H \rightarrow \gamma \gamma$$
:

$$\begin{split} \Gamma/GeV = & 1.042 \cdot 10^{-5} (\pm 4 \cdot 10^{-8}) - 0.00953 (\pm 4 \cdot 10^{-5}) \cdot cA \\ & + 2.178 (\pm 0.009) \cdot cA \cdot cA + 2.178 (\pm 0.009) \cdot tcA \cdot tcA \end{split}$$
Process: H \rightarrow ZZ:

$$\begin{split} &\Gamma/\textit{GeV} = 4.75 \cdot 10^{-7} (\pm 2 \cdot 10^{-9}) + 1.365 \cdot 10^{-6} (\pm 5 \cdot 10^{-9}) \cdot \textit{cHW} \\ &+ 4.09 \cdot 10^{-7} (\pm 2 \cdot 10^{-9}) \cdot \textit{cHB} + 9.75 \cdot 10^{-7} (\pm 4 \cdot 10^{-9}) \cdot \textit{cHL} \\ &+ 9.75 \cdot 10^{-7} (\pm 4 \cdot 10^{-9}) \cdot \textit{cpHL} \\ &+ 1.555 \cdot 10^{-7} (\pm 6 \cdot 10^{-10}) \cdot \textit{tcHW} \\ &+ 4.58 \cdot 10^{12} (\pm 2 \cdot 10^{10}) \cdot \textit{cT} \cdot \textit{cT} + 2.58 \cdot 10^{12} (\pm 2 \cdot 10^{10}) \cdot \textit{cH} \cdot \textit{cT} \\ &+ 5.82 \cdot 10^{12} (\pm 3 \cdot 10^{10}) \cdot \textit{cT} \cdot \textit{cHe} + \text{ smaller terms} \end{split}$$

Remove small contributions that are smaller than expected NLO uncertainties, e.g. 0.1% of the highest contribution.

- H→4l cT quadratic terms are too large.
 - ▶ $H \rightarrow ZZ$, cT=1: small Γ
 - ▶ $H \rightarrow ZII$, cT=1: small Γ
 - ▶ H→4l, cT=1, only H in s-channel: small Γ
 - ▶ H→4I, cT=1, all particles or only Z and H: large Γ

- Our aim is to produce a library with EFT mapping to STXS bins s.t.:
 - include leading operators that appear in the process;
 - provide information about effects due to added/ removed diagrams.
- We will produce a note documenting the results.