

HiggsPO event generator at NLO QCD

Admir Greljo

in collaboration with:

Gino Isidori, Jonas M. Lindert, and David Marzocca

LHC Higgs Cross Section WG2 meeting, 08/05/2017, CERN

- Introduction: Higgs PO framework recap
- Implementation in a Monte Carlo tool
- HiggsPO tool at NLO in QCD New
- Examples and validation
- Conclusions

Experimental data

Fiducial cross sections, distributions,

General encoding of the experimental results

Pseudo-Observables

*limited set of idealised observables

Applicable for large set of BSM theories

Q: How to get most out of the Higgs measurements?

Z = - 4 Fron FMU + i # 19 4 + h.c. + # y : y : 4 : 4 + h.c. - Dedi? Theory Couplings, masses, Wilson coeff.,

- Construction of Higgs Pseudo-Observables (PO) in Higgs decays [1412.6038] and EW production [1512.06135]. Summarised in the Yellow Report 4, Chapter III.1 [1610.07922]
- h(125) is a spin 0 & zero width approximation
 Factorisation of new physics effects in production and decay
- 2. "On-shell" Higgs processes
 - PO are defined as pole residues in scattering amplitudes
 - Well-defined from the point of view of QFT
 - Improvable with (NP-free) soft QCD and QED radiation

Example: $h \rightarrow 2e2\mu$ Decomposition of the (helicity-conserving) amplitude: $\mathcal{A} = i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha}e)(\bar{\mu}\gamma_{\beta}\mu) \times \left[F_1^{e\mu}(q_1^2,q_2^2)g^{\alpha\beta} + F_3^{e\mu}(q_1^2,q_2^2)\frac{q_1 \cdot q_2}{m_Z^2} \frac{q_1 \cdot q_2}{m_Z^2}g^{\alpha\beta} - q_2^{\alpha}q_1^{\beta}}{m_Z^2} + F_4^{e\mu}(q_1^2,q_2^2)\frac{\varepsilon^{\alpha\beta\rho\sigma}q_{2\rho}q_{1\sigma}}{m_Z^2} \right]$

Momentum expansion of the form factors around the physical poles:

- Smooth kinematical distortions from the SM (heavy NP)

Example: **h→2e2**µ

$$\mathcal{A} = i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha}e)(\bar{\mu}\gamma_{\beta}\mu) \times \left[F_1^{e\mu}(q_1^2, q_2^2)g^{\alpha\beta} + F_3^{e\mu}(q_1^2, q_2^2)\frac{q_1 \cdot q_2}{m_Z^2} \frac{g^{\alpha\beta} - q_2^{\alpha}q_1^{\beta}}{m_Z^2} + F_4^{e\mu}(q_1^2, q_2^2)\frac{e^{\alpha\beta\rho\sigma}q_{2\rho}q_{1\sigma}}{m_Z^2} \right] \\\mathcal{A} = i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha}e)(\bar{\mu}\gamma_{\beta}\mu) \times \left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2)P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^{\mu}}{P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} \right) g^{\alpha\beta} + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2)P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{SM-1L} \left(\frac{eQ_\mu g_Z}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^{\mu}}{q_1^2 P_Z(q_2^2)} \right) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{SM-1L} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{q_1 \cdot q_2}{m_Z^2} \frac{g^{\alpha\beta} - q_2^{\alpha}q_1^{\beta}}{m_Z^2} + \left(\epsilon_{ZZ}^{eQ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2)P_Z(q_2^2)} + \epsilon_{Z\gamma}^{eQ} \left(\frac{eQ_\mu g_Z}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^{\mu}}{q_1^2 P_Z(q_2^2)} \right) + \epsilon_{\gamma\gamma}^{eQ} \frac{e^{\alpha\beta\rho\sigma}q_{2\rho}q_1\sigma}{q_1^2 q_2^2} \right) \frac{e^{\alpha\beta\rho\sigma}q_{2\rho}q_1\sigma}{m_Z^2} \right]$$

In the SM: $\kappa_X \to 1$, $\epsilon_X \to 0$ $P_Z(q^2) = q^2 - m_Z^2 + im_Z \Gamma_Z$

PO in EW Higgs production

- Production amplitudes related to decay amplitudes by crossing symmetry
 - Flavour universal **PO** exactly the same
 - Different fermion currents Quark contact terms

Dedicated MC tool: *HiggsPO*

- Wish list for the Monte Carlo event generator:
 - A. <u>Simulate</u> single Higgs production and decays
 - B. Input parameters Higgs PO as defined in Yellow Report 4
 - C. <u>Allow</u> for inclusion of (NP-free) radiative corrections
 - D. <u>Simple</u> to use. Rely on the well-known MC frameworks (and formats)

Dedicated MC tool: *HiggsPO*

- Wish list for the Monte Carlo event generator:
 - A. <u>Simulate</u> single Higgs production and decays
 - B. Input parameters Higgs PO as defined in Yellow Report 4
 - C. Allow for inclusion of (NP-free) radiative corrections
 - D. <u>Simple</u> to use. Rely on the well-known MC frameworks (and formats)
- HiggsPO model (Implementation)
 - 1. *FeynRules* [arXiv:1310.1921]

Define a set of effective interactions that at tree level generate exactly the scattering amplitude of interest (not to be used as a Lagrangian for arbitrary process and beyond tree level in HPO couplings)

- 2. Export model in the Universal FeynRules Output (<u>UFO</u>) [arXiv:1108.2040] To benefit from MG5_aMC@NLO [arXiv:1405.0301] or Sherpa [arXiv:0811.4622] frameworks
- 3. Partonic level events (e.g. <u>MadGraph5</u> <u>aMC@NLO</u> [arXiv:1405.0301]) To be used for a set of well-defined processes. Input lines documented in the HiggsPO Manual for each process separately.
- 4. Partonic events passed to a general purpose event generator (e.g. <u>Pythia</u> [arXiv:1410.3012])
 Automatic inclusion of (NP-free) radiative corrections. Final output in the well-known format e.g. "___.hep" (the STDHEP format).

HiggsPO at NLO in QCD

Implementation details

- QCD Lagrangian (including ghost terms) taken from the SM.fr
- SM fields defined in the mass (unitary) basis
- Effective Lagrangian of the EW sector "HPO couplings" (at tree level reproduce the correct amplitudes)
- NLOCT package to calculate UV and R2 QCD counterterms [Degrande]
- No UV renormalisation of HPO couplings
- R2 terms for flavour dependent contact-terms (hZqq) put by hand in the UFO model

$$R_2^{\bar{f}_i f_i Z h} = -\frac{i g_s^2}{3\pi^2 v} \mathcal{E}_{Z, f^i} ,$$
$$R_2^{\bar{u}_i d_j W^+ h} = -\frac{i g_s^2}{3\pi^2 v} \mathcal{E}_{W, u_L^i d_L^j} e^{-i\phi_{Wu}}$$
[AG, 19]

Note: Flavour dependent contact-terms terms are missing in similar UFO models (e.g. Higgs characterisation [1311.1829])

[AG, Isidori, Lindert, Marzocca] to appear soon

Homepage: HiggsPO

HiggsPO can be downloaded from: <u>http://www.physik.uzh.ch/data/HiggsPO/</u>

Homepage: HiggsPO

HiggsPO can be downloaded from: <u>http://www.physik.uzh.ch/data/HiggsPO/</u>

in s-dependent width:	
^{J[#]} O and ZFI FTER therefore	Р
$ \frac{1}{2} \frac{\text{parameters}}{1} $ (11)	0
$Z = \frac{i S \Gamma}{Z} / \frac{i N \Gamma}{Z} $ (11)	
s written starting from a	
$ \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
$\operatorname{Re} \mathcal{G}^{f}_{V}$ g^{f}_{V} g^{f}_{V}	
ਚr μZO(GG, AtrXG);13/5\$\$A15, hep(6x)0509008]	
include all cor-	
• ####################################	
parts. Note that imagin ^{##} INFORMATION FOR WZPOLE	
$g^{s} = \operatorname{Re} G^{s}$ Block wzpole	
1 -2.696000e-01 # gZeL	
ne Z definediavidude all c 2 -2.690000e-01 # gZmuL	
$\frac{1}{10}$	
ial decay width is theref 5 2 320000-01 # gzer	
6 2.327000e-01 # g2muk	
$radiat \partial r_{T} I = \sigma_{P} $, 7 5.000000e-01 # gZv	
a and take into 8 9.940000e-01 # gWe	
9 9.910000e-01 # gWmu	
$(2 R_{J_0}) + \Lambda$ 10 1.025000e+00 # gWtau	
ons for ward cand back 11 3.467000e-01 # gzuL	
in particular for 12 -4.243000e-01 # gZdL	
grward-backward asymme 15 -1.54/000e-01 # gzuk	
esualbounalenaaenalor lact 10 /./35000e-02 # gzuk	
Preral settings and take into param card dat.	
en radiators and	
$\frac{3}{13} \sigma_{\rm M} = 13$	
$(1 + 1) \cap (1 +$	

Higgs PO — EW Higgs decays and production

•	
• ####################################	##############
## INFORMATION FOR HP	OQUARK
*######################################	##############
Block hpoguark	•
• 51 0.000000e+00 #	eZuL
• 52 0.000000e+00 #	eZuR
53 0.000000e+00 #	eZdL
54 0.000000e+00 #	eZdR
• 55 0.000000e+00 #	eWuL
56 0.000000e+00 #	phiWuL
	naram card dat
••••••	

Production: *VBF, VH* Decays: $h \rightarrow 4\ell$, $h \rightarrow 2q 2\ell$, $h \rightarrow 2 \vee 2\ell$, $h \rightarrow 2\ell \gamma$, $h \rightarrow \gamma \gamma$

•••••	• •	• • • • • • • • • • • •
• #####################################	###	*#############
*## INFORMATION FOR	HPC)4F
****************	###	*##############
Block hpo4f		•
• 1 1.000000e+00	#	<zz< td=""></zz<>
2 1.000000e+00	#	cWW .
3 1.000000e+00	#	<aa td="" •<=""></aa>
• 4 1.000000e+00	#	κΖ Α
 5 0.000000e+00 	# e	eZZ
6 0.000000e+00	# e	eWW .
7 0.000000e+00	# 1	LAACP
• 8 0.000000e+00	# 1	LZACP
9 0.000000e+00	# e	ZZCP
10 0.000000e+00	# e	eWWCP •
. 11 0.000000e+00	# e	eZeL
 12 0.000000e+00 	# e	ZmuL
13 0.000000e+00	# e	ZtauL
14 0.000000e+00	# €	ZeR
. 15 0.000000e+00	# e	ZmuR
16 0.000000e+00	# e	ZtauR
17 0.000000e+00	# e	ezv .
18 0.0000000000000	# e	We
. 19 0.000000000000000000000000000000000	# e	ewmu
20 0.0000000000000000000000000000000000	# e	ewtau
21 0.000000000000	# P	niwe .
. 22 0.00000000000000000000000000000000	# P	INTRU •
 23 0.000000e+00 	# p	uniwiau
•		param_card.dat •

Example: **h** → **2e2**µ

MadGraph5_aMC@NLO

- > import model HiggsPO_UFO
- > generate h > e+ e- mu+ mu- YUK=0
- > output heemumu

Analytic calculation

Example: **h** → **2e2**µ

MadGraph5_aMC@NLO

- > import model HiggsPO_UFO
- > generate h > e+ e- mu+ mu- YUK=0
- > output heemumu

Analytic calculation

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q_1^2\mathrm{d}q_2^2} = \Pi_{4l} \int \mathrm{d}\Omega \sum_{\mathrm{s}} \mathcal{A}\mathcal{A}^*,$$
$$\sum_{\mathrm{s}} \mathcal{A}\mathcal{A}^* = \left(\frac{2m_Z^2}{v_F}\right)^2 \sum_{f,f'} \mathrm{tr}(\not p_1 \gamma_\mu P^f \not p_2 \gamma_{\mu_1})$$
$$\times \mathrm{tr}(\not p_3 \gamma_\nu P^{f'} \not p_4 \gamma_{\nu_1})$$

$$\times \mathcal{T}_{ff'}^{\mu\nu}(q_1, q_2) \mathcal{T}_{ff'}^{\mu_1\nu_1*}(q_1, q_2),$$

- Opposite sign same flavour lepton pair invariant mass cut: $m_{\ell\ell} > 5 \text{ GeV}$
 - Benchmark (a): $\kappa_{ZZ} = 1$ and all other Higgs PO zero. The decay width in Mad-Graph: $2.3241(7) \times 10^{-7}$ GeV and analytic: 2.3232×10^{-7} GeV. See Fig 1 (a).
 - Benchmark (b): $\epsilon_{Ze_L} = 1$ and all other Higgs PO zero. The decay width in Mad-Graph: $1.4919(5) \times 10^{-6}$ GeV and analytic: 1.4917×10^{-6} GeV. See Fig 1 (b).
 - Benchmark (c): $\kappa_{ZZ} = 1$, $\epsilon_{Ze_L} = 0.4$ and all other Higgs PO zero. The decay width in MadGraph: $7.449(2) \times 10^{-7}$ GeV and analytic: 7.447×10^{-7} GeV. See Fig 1 (c).
 - Benchmark (d): $\epsilon_{ZZ} = 1$ and all other Higgs PO zero. The decay width in Mad-Graph: $2.1368(7) \times 10^{-8}$ GeV and analytic: 2.1368×10^{-8} GeV. See Fig 1 (d).
 - Benchmark (e): $\kappa_{ZZ} = 0.3$, $\epsilon_{ZZ} = 1$ and all other Higgs PO zero. The decay width in MadGraph: $7.768(2) \times 10^{-8}$ GeV and analytic: 7.767×10^{-8} GeV. See Fig 1 (e).
 - Benchmark (f): $\lambda_{Z\gamma}^{CP} = 1$ and all other Higgs PO zero. The decay width in Mad-Graph: 8.880(3) × 10⁻¹⁰ GeV and analytic: 8.874 × 10⁻¹⁰ GeV. See Fig 1 (f).

Example: **h** → **2e2**µ

Example: **h** → **V q q**

1) MadGraph5_aMC@NLO

2) Analytic calculation

 $K_F = 1 + \alpha_s/\pi \simeq 1.038$

h -	$\rightarrow W^{-}$	$d\bar{u} + W$	$V^- \overline{dc} +$	$W^{-}\bar{s}u$	$+W^{-}\bar{s}c$	a /
kWW	eWuL	phiWuL	LO (an.)	LO	NLO	K_F
1	0	0	259.0	259.4(2)	269.1(3)	1.037(1)
0	1	0	883.1	883.0(7)	916.8(8)	1.038(1)
1	0.54	0	2.678	2.676(2)	2.782(3)	1.040(1)
1	0.54	$\pi/2$	500.8	501.1(4)	520.1(6)	1.038(1)
1	-0.54	$\pi/2$	532.3	531.8(4)	552.3(6)	1.039(1)
1	-0.54	0	1030	1030(1)	106.7(1)	1.036(1)

 $h \rightarrow Z \bar{u} u + Z \bar{c} c$

Total inclusive decay rates are: in KeV

kZZ	eZuL	eZuR	LO (an.)	LO	NLO	K_F
1	0	0	19.83	19.84(2)	20.58(2)	1.037(1)
0	1	0	219.7	219.3(2)	228.2(2)	1.040(1)
0	0	1	219.7	219.6(2)	228.0(2)	1.039(1)
1	0.3	0	3.480	3.481(3)	3.606(5)	1.036(1)
1	-0.3	0	75.72	75.75(6)	78.64(7)	1.038(1)
1	0	0.3	55.72	55.70(5)	57.97(5)	1.038(1)
1	0	-0.3	23.48	23.51(2)	24.37(3)	1.037(1)

 $h \to Z \bar{d} d + Z \bar{s} s$

Total inclusive decay rates are:

kZZ	eZdL	eZdR	LO (an.)	LO	NLO	K_F
1	0	0	25.59	25.60(2)	26.56(2)	1.037(1)
0	1	0	219.7	219.3(2)	228.2(3)	1.040(1)
0	0	1	219.7	219.6(2)	227.7(2)	1.037(1)
1	0.34	0	101.1	101.1(1)	104.7(1)	1.036(1)
1	-0.34	0	0.8869	0.8872(7)	0.9211(8)	1.038(1)
1	0	0.34	41.85	41.84(3)	43.55(4)	1.040(1)
1	0	-0.34	60.12	60.18(5)	62.38(6)	1.037(1)

MADGRAPH5_AMC@NLO

import model HPO_ewk_prod_NL0
generate p p > h z HPO=1 QED=1 QCD=0 [QCD]
output ppHZnlo

<u>Benchmarks</u>

BP	kZZ	eZuL	eZuR	eZdL	eZdR
Ι	1	0	0	0	0
II	1	0.0195	0	0	0
III	1	0	0.0195	0	0
IV	1	0	0	0.0244	0
V	1	0	0	0	0.0244

[AG, Isidori, Lindert, Marzocca] to appear soon

MADGRAPH5_AMC@NLO

import model HPO_ewk_prod_NLO
generate p p > h z HPO=1 QED=1 QCD=0 [QCD]
output ppHZnlo

<u>Benchmarks</u>

BP	kZZ	eZuL	eZuR	eZdL	eZdR
Ι	1	0	0	0	0
II	1	0.0195	0	0	0
III	1	0	0.0195	0	0
IV	1	0	0	0.0244	0
V	1	0	0	0	0.0244

*Confirmed with SHERPA+OPENLOOPS

[AG, Isidori, Lindert, Marzocca] to appear soon

MADGRAPH5_AMC@NLO

Final remarks

- HiggsPO: Event generator for Higgs Pseudo-Observables (PO) framework
- Publicly available at: <u>http://www.physik.uzh.ch/data/HiggsPO/</u> with the instructions note.
- Higgs decays fully implemented in Version 1.0
- Higgs EW production available in Version 1.1
- Upgrade to NLO in QCD available in Version 1.2.