Anomalous couplings of H(125)⁰ boson: CMS perspective

Andrei Gritsan

Johns Hopkins University

Special thanks to David Marzocca and Markus Schulze (theory) for discussion of anomalous effects and comparison of frameworks

May 8, 2017

LHC Higgs Cross Sections Working Group meeting Working Group 2 kickoff meeting post-YR4

Focus on H⁰ boson anomalous couplings

"Exotic" Spin Studies in Run-1

$$\begin{split} A(X \to V_1 V_2) &= 2g_1^{(2)} t_{\mu\nu} f^{*(1)\mu\alpha} f^{*(2)\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*(1)\mu\alpha} f^{*(2)\nu\beta} \\ &+ g_3^{(2)} \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} \left(f^{*(1)\mu\nu} f^{*(2)}_{\mu\alpha} + f^{*(2)\mu\nu} f^{*(1)}_{\mu\alpha} \right) + g_4^{(2)} \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_V^2 \left(2g_5^{(2)} t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6^{(2)} \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} \left(\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu} \right) + g_7^{(2)} \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*} \epsilon_2^{*} \right) \\ &+ g_8^{(2)} \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} \\ &+ m_V^2 \left(g_9^{(2)} \frac{t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma + \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^4} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left(\epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*) \right) \right) \end{split}$$

J=1,2 excluded with H(125)⁰

J=0 parameterization: target measurements

Two equivalent parameterizations: Effective Lagrangian

$$L(HVV) \sim \begin{bmatrix} a_{1} \frac{m_{x}^{2}}{2} HZ^{\mu} Z_{\mu} - \frac{\kappa_{1}}{(\Lambda_{1})^{2}} m_{x}^{2} HZ^{\mu} \Box Z_{\mu} - \frac{\kappa_{3}}{2(\Lambda_{Q})^{2}} m_{x}^{2} \Box HZ^{\mu} Z_{\mu} - \frac{1}{2} a_{2} HZ^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_{3} HZ^{\mu\nu} \tilde{Z}_{\mu\nu} \\ + a_{1}^{WW} m_{w}^{2} HW^{+\mu} W_{\mu}^{-} - \frac{1}{(\Lambda_{1}^{WW})^{2}} m_{w}^{2} H (\kappa_{1}^{WW} W_{\mu}^{-} \Box W^{+\mu} + \kappa_{2}^{WW} W_{\mu}^{+} \Box W^{-\mu}) \\ - \frac{\kappa_{3}^{WW}}{(\Lambda_{2}^{WW})^{2}} m_{w}^{2} \Box HW^{+\mu} W_{\mu}^{-} - a_{2}^{WW} HW^{+\mu\nu} W_{\mu\nu}^{-} - a_{3}^{WW} HW^{+\mu\nu} \tilde{W}_{\mu\nu}^{-} \\ + \frac{\kappa_{2}^{2\gamma}}{(\Lambda_{1}^{\gamma\gamma})^{2}} m_{x}^{2} HZ_{\mu} \partial_{\nu} F^{\mu\nu} - a_{2}^{2\gamma} HF^{\mu\nu} Z_{\mu\nu} - a_{3}^{2\gamma} HF^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_{2}^{\gamma\gamma} HF^{\mu\nu} \tilde{F}_{\mu\nu} - \frac{1}{2} a_{3}^{\gamma\gamma} HF^{\mu\nu} \tilde{F}_{\mu\nu} \\ - \frac{1}{2} a_{2}^{2g} HG_{a}^{\mu\nu} G_{\mu\nu}^{a} - \frac{1}{2} a_{3}^{gg} HG_{a}^{\mu\nu} \tilde{G}_{\mu\nu}^{a}, \\ gg \\ \bullet \text{ or Amplitude} \\ A = \frac{1}{v} \left(\begin{bmatrix} a_{1} - e^{i\phi_{AQ}} \frac{(q_{1} + q_{2})^{2}}{(\Lambda_{Q})^{2}} - e^{i\phi_{A1}} \frac{q_{1}^{2} + q_{2}^{2}}{(\Lambda_{1})^{2}} \end{bmatrix} m_{v}^{2} \epsilon_{1}^{*} \epsilon_{2}^{*} + a_{2} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right) \\ \text{ SM Higgs 0^{+}: (a_{1}) CP \\ \hline e_{1} - \frac{1}{\sqrt{2}} \sum_{q}^{2} e_{1}^{-} - \frac{1}{\sqrt{2}} \sum_{q}^{2} e_{1}^{-}$$

CMS-HIG-14-018

77

Measurements: HVV and Hff

• Use $VV \rightarrow H \rightarrow VV \rightarrow 4\ell$ as an example of HVV studies CMS-HIG-17-011

MC and techniques: MELA / JHUGen+MCFM

Measurements in Run1 and Run2

Summary of Measurements

Summary of Measurements

H⁰ SPIN AND CP PROPERTIES

VALUE

DOCUMENT ID _____ TECN _____ COMMENT

• • We do not use the following data for averages, fits, limits, etc. • • •

Run1 in H→VV (more on production, but same measurements)

Experimental Observables and Measurements

Measurements: $f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda 1} / (\Lambda_1)^4 + \dots},$ $\phi_{a3} = \arg\left(\frac{a_3}{a_1}\right),$ $(1 - f_{an}) \ \mathcal{T}_{a1}^{i,k}(\vec{x}) + f_{an} \ \mathcal{T}_{an}^{i,k}(\vec{x}) + \sqrt{f_{an} (1 - f_{an})} \ \mathcal{T}_{a1,an}^{i,k}(\vec{x};\phi_{an})$ Optimal MELA observables in 3D fit $VV \rightarrow H \rightarrow VV \rightarrow 4\ell$ **CMS** *Preliminary* 35.9 fb⁻¹ (13 TeV) $D_{0-} = \frac{P_{0+}}{P_{0+} + P_{0-}} \qquad D_{CP} = \frac{P_{interference}}{P_{0+} + P_{0-}}$ -2∆ln L Dbkg Observed, $\phi_{a3} = 0$ or π Expected, $\phi_{a3} = 0$ or π 20 production&decay information in each category CMS-HIG-17-011 **CMS** Preliminary 35.9 fb⁻¹ (13 TeV) **CMS** Preliminary 35.9 fb⁻¹ (13 TeV) decay Events / 0.12 Events / 0.03 Observed Observed $D_{bkg} > 0.5$ $D_{bkg} > 0.5$ total SM total SM VBF+VH SM VBF+VH SM production 10 total $f_{33} = 1$ total $f_{a3} = +0.5$ VBF+VH f_{a3} = 1 $VBF + VH f_{a3} = + 0.5$ decay ZZ/Ζγ' production $ZZ/Z\gamma^*$ Z+X Z+X +decay 95% CL 2 0.5 -0.5 0 f_{a3} cos(φ_

0.2

0.4

0.6

0.8

 $D_{0-}^{VBF+dec}$

measuremen

[-1,1]

0.2

0.4

D_{CP}^{dec}

-0.2

observable

Experimental Observables and Measurements

• In decay $H \rightarrow VV \rightarrow 4\ell$ and with ℓ flavor universality ($\varepsilon_{Z\mu} = \varepsilon_{Ze}$)

contact terms ($\epsilon_{Z\ell_{R}}, \epsilon_{Z\ell_{L}}$) ~ amplitudes ($\Lambda_{1}, \Lambda_{1}^{Z\gamma}$)

Perform 2D fit (Λ₁, Λ₁^Zγ)
 get (ε_Zℓ_R, ε_Zℓ_L) or (Λ₁, Λ₁^Zγ)

← $(f_{\Lambda 1}, f_{a2})$ done in the past, can do $(f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma})$

- In decay $H \rightarrow VV \rightarrow 4\ell$ and with ℓ flavor universality ($\varepsilon_{Z\mu} = \varepsilon_{Ze}$) contact terms ($\varepsilon_{Z\ell_R}, \varepsilon_{Z\ell_L}$) ~ amplitudes ($\Lambda_1, \Lambda_1^{Z\gamma}$)
- In production+decay WW'+ZZ' \rightarrow H \rightarrow VV \rightarrow 4 ℓ

flavor universality (SM) helps less ($\varepsilon_{Z\mu} = \varepsilon_{Ze} \sim \varepsilon_{Zu} = \varepsilon_{Zc} \sim \varepsilon_{Zd} = \varepsilon_{Zs} = \varepsilon_{Zb}$) need both ZZ' and WW' fusion ($\varepsilon_{W\mu}, \varepsilon_{We}, \varepsilon_{Wu}, \varepsilon_{Ws}, \varepsilon_{Wd}, \varepsilon_{Wc}, \varepsilon_{Wb}$) we cannot deal with 14 ZZ'+12 WW' (?) contact terms (still no FCNC) opted to relate as in Zff and Wff

- In decay $H \rightarrow VV \rightarrow 4\ell$ and with ℓ flavor universality ($\varepsilon_{Z\mu} = \varepsilon_{Ze}$) contact terms ($\varepsilon_{Z\ell_R}, \varepsilon_{Z\ell_L}$) ~ amplitudes ($\Lambda_1, \Lambda_1^{Z\gamma}$)
- In production+decay WW'+ZZ' \rightarrow H \rightarrow VV \rightarrow 4 ℓ
- flavor universality (SM) helps less ($\varepsilon_{Z\mu} = \varepsilon_{Ze} \sim \varepsilon_{Zu} = \varepsilon_{Zc} \sim \varepsilon_{Zd} = \varepsilon_{Zs} = \varepsilon_{Zb}$) need both ZZ' and WW' fusion ($\varepsilon_{W\mu}, \varepsilon_{We}, \varepsilon_{Wu}, \varepsilon_{Ws}, \varepsilon_{Wd}, \varepsilon_{Wc}, \varepsilon_{Wb}$) we cannot deal with 14 ZZ'+12 WW' (?) contact terms (still no FCNC) opted to relate as in Zff and Wff
- In Run2:

most focus will be on production need practical way to relate couplings assume $a_i^{ZZ} = a_i^{WW}$

little difference to distinguish otherwise

CMS vs. AC vs. EFT vs. PO vs...

multi-parameter fits possible, e.g. 8D in $H \rightarrow 4\ell$

Main issues facing experimental measurements:

(1) how to optimize observables for max. sensitivity

typically limit to 1-2 parameters with ~3D fit

but limit to decay-only, not main focus, 13D not feasible yet...

CMS introduced optimal discriminants, ATLAS picked the idea (OO) but do not need to agree between CMS / ATLAS

(2) how to reduce the number of free parameters measure 1 or 2 couplings at a time others relate (e.g. $a_i^{ZZ} = a_i^{WW}$) or set to zero/SM reality: not practical to measure all at once agreement between CMS / ATLAS ? (mostly agreed so far)

 $f_{a2} \cos(\phi_{a2})$

Issue (3) q² validity

- (3) VBF and VH limits are tighter than H→VV because of larger q², cannot continue forever possible to test validity e.g. with p_T cuts (correlated with q²), but:
- not consistent between VBF, VH, H→VV
- nightmare for experimentalists
 (redo everything for each selection)

Adopted practical and coherent approach:

refit with a Λ^2 cut-off on q² (data fixed, signal model changes)

$$g'_i \times \frac{\Lambda_i^2}{\left(\Lambda_i^2 + |q_1^2|\right)\left(\Lambda_i^2 + |q_2^2|\right)\right)}$$

Issue (4) extending to offshell

 ~10% of H→4ℓ in offshell, additional (q1+q2)² modeling but we already deal with q² modeling

Issue (5) relate the yields in combination

CMS-HIG-14-018 CMS-HIG-14-035

Issue (6) complex couplings

- Hermitian L => real couplings => phase 0 or π
 amplitude could have complex effective couplings
 e.g. light particles in the loop (also q² related...)
- Experimentally: consistency of the data with SM

check complex phases CMS 19.7 fb⁻¹ (8 TeV) 20 Z∆ InL 3 unconstrained as a consistency test 18 ϕ_{2} unconstrained ϕ_{A1} unconstrained tested arbitrary phases (profiled) CMS-HIG-14-018 profiled other couplings and phases 0.2 0.4 0.6

nstrained 18 18 68% CL 68% CL 68% CL f_{a3} 8 May 2017

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹

Observed, $\phi_{3}=0$ or π

Expected, $\phi_{a3}=0$ or π

0.5

5.1 fb⁻¹ (7 TeV)

 $f_{a3} \cos(\phi_{a3})$

CMS

-0.5

0

14

12

10

Issue (7) dealing with the contact terms

- Current CMS approach: stick to flavor universality ("early stage") contact terms (ε_Zℓ_R, ε_Zℓ_L) = amplitudes (Λ₁, Λ₁^ZΥ) works with ℓ flavor universality (ε_Zμ=ε_Ze) may perform (f_{Λ1}, f_{Λ1}^ZΥ) fit to cover full plane (ε_Zℓ_R, ε_Zℓ_L) explicitly in production need to assume relationship (e.g. as in Vff)
- Expanding beyond flavor universality ("advanced stage")

in principle trivial, can write anything in the amplitude
in practice analysis nightmare with ~14 ZZ' + 12 WW' (?) terms
little sensitivity to distinguish
also note: we test 1-2 parameters at a time
there is also a developer nightmare: years of development already

introduce as it becomes needed (with available statistics)

Summary

Experimental goal: consistency of data with SM thru measurements:

extensive set of anomalous H couplings in both production & decay

Consistent with AC/EFT/PO framework

with flavor universality at the moment (but can extend as needed)

- Stay open to tests beyond framework (esp. common across LHC)
- Working model with (1) observables
 - (2) measurements (and relationship)
 - (3) q² range validity testing
 - (4) offshell approach
 - (5) yield relationship in combination
 - (6) complex couplings test

BACKUP

Snowmass 2013: anomalous H couplings

arXiv:1309.4819 arXiv:1310.8361

Draapata				Collider	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	target	
Prospects:					E (GeV)	14,000	$14,\!000$	250	350	500	1,000	126	126	(theory)
					$\mathcal{L}~(\mathrm{fb}^{-1})$	300	3,000	250	350	500	1,000	250		
					$\operatorname{spin-2}_m^+$	${\sim}10\sigma$	$\gg 10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$			$>5\sigma$
					VVH^{\dagger}	0.07	0.02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
					VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	_	_	$< 10^{-5}$
VVH					VVH^{\diamond}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	\checkmark	\checkmark	\checkmark	\checkmark	_	_	$< 10^{-5}$
					ggH	0.50	0.16	—	_	_	—	_	_	$< 10^{-2}$
1 10 ⁻¹ 10 ⁻²					$\gamma\gamma H$	_	_	_	_	_	_	0.06	_	$< 10^{-2}$
		H→	VV		$Z\gamma H$	_	\checkmark	_	_	_	_	_	_	$< 10^{-2}$
	=	, 			au au H	\checkmark	\checkmark	0.01	0.01	0.02	0.06	\checkmark	\checkmark	$< 10^{-2}$
		•			ttH	arXiv:1606.03107		_	_	0.29	0.08	_	_	$< 10^{-2}$
	_				$\mu\mu H$	—	—	_	_	_	_	_	\checkmark	$< 10^{-2}$
						[†] estimated in $H \to ZZ^*$ decay mode								
с С			Ą				-		‡ est	stimated in $V^* \to HV$ production mo			de	
<u> </u>		F_	т					\diamond estimated in $V^*V^* \rightarrow H$ (VBF) production mod						
				Å										
10 ⁻⁴	=		VH											
						_								
10 ⁻⁵						Å	-							
	-						-							
10 ⁻⁶		$p_{1a} p_{p}$	14 2 00 20	e	e.350 ee 50	ee 1 -]							
¹⁴ TeV, 300 fb1, 3000 fb1, 250 fb1, 350 fb1, 3														

4