Searching for NP in $b \rightarrow s \tau \tau$ decays

Bernat Capdevila

Institut de Física d'Altes Energies (IFAE)

September 24, 2018

15th International Workshop on Tau Lepton Physics

In collaboration with: A. Crivellin, S. Descotes-Genon, L. Hofer & J. Matias Based on 1712.01919 PRL (2018)

• □ > • □ > • □ > •

Outline		

- 1. Experimental status. B-anomalies
- 2. EFT approach for $b \rightarrow c \ell \nu$ and $b \rightarrow s \tau \tau$
- 3. Implications for branching ratios
- 4. Conclusions

Image: Image:

Recently, the field of semi-leptonic rare ${\cal B}$ decays has been providing some interesting anomalies.

- 2013: $1fb^{-1}$ dataset LHCb found 3.7 σ (w.r.t. SM pred).
- 2015: $3fb^{-1}$ dataset LHCb found 3σ (w.r.t. SM pred) in 2 bins.
- Belle confirmed it in a bin [4,8] few months ago.

EFT Approach

Implications

Conclusions

B-anomalies: $b \rightarrow s \mu \mu$

- $BR(B \rightarrow K\mu\mu)$ small compared to SM predictions.
- Deviations in $BR(B_s \rightarrow \phi \mu \mu).$
- Several systematic low-recoil small tensions in BR_µ.
- LFUV ratios R_K & R_{K*}.

< □ > < □ >

Global analysis of $b ightarrow s \underline{\ell} \ell$ data

Global analysis of all the data available on $b \to s\ell\ell$ ($\ell = \mu, e$) suggest very significant signals of NP in the muon sector, especially in $C_{9\mu}$.

[BC, Crivellin, Descotes-Genon, Matias, Virto]

イロト イヨト イヨト

Institut de Física d'Altes Energies (IFAE)

EFT Approach

Implications

B-anomalies: $b \rightarrow c \ell \nu$

$b ightarrow c \ell u$ LFU ratios
$R_X = rac{Br(B o X au u)}{Br(B o X \ell ar u_\ell)}$
with $X=D, D^*, J/\psi$

 $\begin{array}{l} \blacksquare R_D \& R_{D^*} \mbox{ HFLAV combination of } \\ \mbox{Belle, Babar & LHCb data} \\ \Rightarrow \sim 4\sigma \mbox{ (w.r.t. SM pred).} \end{array}$

イロト イポト イヨト イヨト

■ LHCb measured $R_{J/\psi} \Rightarrow \sim 2\sigma$ (w.r.t. SM pred).

Institut de Física d'Altes Energies (IFAE)

Searching for NP in b \rightarrow $s\tau\,\tau$ decays

Implications

EFT approach for $b \rightarrow c \ell \nu$ transitions

b ightarrow c au u Effective Hamiltonian

$$\begin{split} \mathcal{H}_{\text{eff}}^{b \to c \tau \nu} &= \frac{4 G_F V_{cb}}{\sqrt{2}} \Big[(1 + \epsilon_L) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_\tau) + \text{right handed} \\ &+ \text{tensors} + \text{scalars} + ... \Big] + \text{hc} \end{split}$$

- not too large contributions to B_c lifetime [Alonso, Grinstein, Camalich]
- **q**² distribution of R_{D^*} [Freytsis et al; Celis et al; Ivanov et al]
- \Rightarrow NP contributions to SM operator $(\bar{c}_L \gamma^{\mu} b_L)(\bar{\tau}_L \gamma_{\mu} \nu_{\tau})$ are favoured.

 \Rightarrow Leading to

$$rac{R_{J/\psi}}{R_{J/\psi}^{
m SM}} = rac{R_D}{R_D^{
m SM}} = rac{R_{D^*}}{R_{D^*}^{
m SM}} = \left(1+\epsilon_L
ight)^2$$

agrees well with the current experimental data!

[Bernlochner, Ligeti, Papucci, Robinson, Ruderman; Watanabe; Dutta; Alok et al.]

Bernat Capdevila

Searching for NP in $b \rightarrow s au au$ decays

Institut de Física d'Altes Energies (IFAE)

Gauge generation of effective operators

Assuming NP generates these contributions from a scale much larger than the electroweak symmetry breaking scale, two $SU(2)_L$ -operators drive the effect,

$$\begin{aligned} \mathcal{O}_{ijkl}^{(1)} &= (\bar{Q}_i \gamma_\mu Q_j) (\bar{L}_k \gamma^\mu L_l), \\ \mathcal{O}_{ijkl}^{(3)} &= (\bar{Q}_i \gamma_\mu \sigma^l Q_j) (\bar{L}_k \gamma^\mu \sigma^l L_l), \end{aligned}$$

with Q(L) the left-handed quark(lepton) doublets and $C_{ijkl}^{(1,3)}$ the corresponding WCs. [Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

After EWSB, $\mathcal{O}_{ijkl}^{(1,3)}$ contribute to $b \to c(s)$ processes with τ -leptons and τ -neutrinos in the final state.

⇒ *b* transitions with lepton 3-generation final states ⇒ j = k = l = 3. ⇒ Notation: $\mathcal{O}_{ij33}^{(1,3)} \equiv \mathcal{O}_{ij}^{(1,3)}$ & $C_{ij33}^{(1,3)} \equiv C_{ij}^{(1,3)}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EFT Approach	

Which operator(s) to explain $R_{D(*)}$?

Working in the mass eigenbasis for *d*, ℓ , ν_{ℓ} (assuming $m_{\nu_{\ell}} = 0$),

$$Q_i = \begin{pmatrix} V_{ji}^* u_j \\ d_i \end{pmatrix} \qquad L_i = \begin{pmatrix} \nu_i \\ \ell_i \end{pmatrix}$$

Four operators could provide a solution for $R_{D^{(*)},J/\psi}$: $\mathcal{O}_{33}^{(3)}$, $\mathcal{O}_{13}^{(3)}$ & $\mathcal{O}_{23}^{(1,3)}$.

Constraints on
$$C_{33}^{(3)}$$
:

 \Rightarrow Contributions to $b \rightarrow c \tau^- \bar{
u}_{ au}$ and $b \rightarrow s \mu^+ \mu^-$.

[Glashow, Guadagnoli, Lane; Battacharya et al; Butazzo et al]

- \Rightarrow Proportional to $V_{cb} \Rightarrow R_{D^{(*)}}$ requires a large $C_{33}^{(3)}$.
- \Rightarrow Conflict with bounds from electroweak precision data [Feruglio, Paradisi, Pattori].
- $\Rightarrow\,$ Disfavoured by LHC searches in $\tau^+\tau^-$ final state [Faroughy, Greljo, Kamenik].

Constraints on $C_{13}^{(3)}$:

- \Rightarrow Proportional to V_{cd} in $b \rightarrow c\tau^- \bar{\nu}_{\tau} \Rightarrow$ CKM suppression.
- ⇒ Potential dominant contributions to very SM-like $b \rightarrow u\tau^- \bar{\nu}_{\tau}$ and $b \rightarrow d\tau^+ \tau^-$ transitions (*Vud* ↔ *Vcd*) ⇒ i.e. Br($B^- \rightarrow \tau^- \bar{\nu}_{\tau}$).

[Charles et al; Descotes-Genon, Koppenburg]

< 日 > < 同 > < 三 > < 三 >

 \Rightarrow A large contribution is excluded.

Experimental Status EF	T Approach	Implications	Conclusions
Consequences for $h \rightarrow c \tau^{-}$	\overline{u} and $h \rightarrow s \pi^+ \pi^-$ for	$rom h \rightarrow s \mu \overline{\mu}$	

 $\Rightarrow \mathcal{O}_{23}^{(1,3)} \text{ are the only remaining operators for the generation of } b \rightarrow c\tau^- \bar{\nu}_{\tau}$ FCCC able to explain $R_{D^{(*)}}$.

$$\begin{array}{lcl} C^{(1)}\mathcal{O}^{(1)} & \rightarrow & C^{(1)}_{23} \left[(\bar{s}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \tau_L) + (\bar{s}_L \gamma_\mu b_L) (\bar{\nu}_\tau \gamma^\mu \nu_\tau) \right], \\ C^{(3)}\mathcal{O}^{(3)} & \rightarrow & C^{(3)}_{23} \left[2 V_{cs} (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_\tau) + (\bar{s}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \tau_L) - (\bar{s}_L \gamma_\mu b_L) (\bar{\nu}_\tau \gamma^\mu \nu_\tau) \right] \end{array}$$

- \Rightarrow Constraints from FCNCs: $b \rightarrow s \nu \bar{\nu}$.
- ⇒ Br($B \rightarrow K \nu \bar{\nu}$) excludes large effects in $b \rightarrow s \nu \bar{\nu}$ (SM : 4.2 × 10⁻⁶ [Buras et al], Babar bound ≤ 1.7 × 10⁻⁵ at 90%CL)

Combining FCCC and FCNC contributions from \mathcal{O}_{23} operators,

- $\Rightarrow C_{23}^{(1)} \simeq C_{23}^{(3)}$ evades the $b \to s
 u ar{
 u}$ constraint
- $\Rightarrow\,$ can be achieved with vector LQ ${\it SU}(2)$ singlet or with 2 scalar LQs

[Alonso, Grinstein Camalich; Calibbi, Crivellin, Ota, Müller]

- ロ ト - (同 ト - - 三 ト - - 三 ト

⇒ Contributions to $b \rightarrow c\tau^- \bar{\nu}_{\tau}$ and $b \rightarrow s\tau^+ \tau^-$ are naturally generated together in the combination (neglecting small CKM effects),

$$2C_{23}\left[(\bar{c}_L\gamma_{\mu}b_L)(\bar{\tau}_L\gamma^{\mu}\nu_{\tau})+(\bar{s}_L\gamma_{\mu}b_L)(\bar{\tau}_L\gamma^{\mu}\tau_L)\right]$$

Correlation between $b ightarrow c au^- ar{ u}_ au$ and $b ightarrow s au^+ au^-$

$b ightarrow s au^+ au^-$ Effective Hamiltonian

$$\mathcal{H}^{b o s au au}_{ ext{eff}} = -rac{4 G_F}{\sqrt{2}} V_{tb} V^*_{ts} \sum_i C_i \mathcal{O}_i$$

With the relevant effective operators,

$$\begin{split} O_{9(10)}^{\tau\tau} &= \frac{\alpha}{4\pi} \big(\bar{s} \gamma^{\mu} P_L b \big) \left(\bar{\tau} \gamma_{\mu} (\gamma^5) \tau \right), \\ O_{9'(10')}^{\tau\tau} &= \frac{\alpha}{4\pi} \big(\bar{s} \gamma^{\mu} P_R b \big) \left(\bar{\tau} \gamma_{\mu} (\gamma^5) \tau \right), \end{split}$$

We impose the $SU(2)_L$ structure $C_9^{\tau\tau} = -C_{10}^{\tau\tau}$ that we observe in the SM and use that $C_{23}^{(1)} \simeq C_{23}^{(3)}$,

$$\begin{split} \mathcal{H}_{\text{eff}}^{b \to s\tau\tau} &\to -(4G_F/\sqrt{2})V_{tb}V_{ts}^*\frac{\alpha}{4\pi}(C_9^{\text{SM}}+C_9^{\tau\tau})\\ \mathcal{H}_{\text{eff}}^{b \to c\tau\nu} &\to (4G_FV_{cb}/\sqrt{2})(1+\epsilon_L) \end{split} \right\} \Rightarrow C_{9(10)}^{\tau\tau} \simeq C_{9(10)}^{\text{SM}} - (+)\Delta \\ \Rightarrow \quad \Delta = \frac{2\pi}{\alpha}\frac{V_{cb}}{V_{tb}V_{ts}^*}\left(\sqrt{\frac{R_X}{R_X^{\text{SM}}}} - 1\right) \end{split}$$

- Process independent: R_X/R_X^{SM} for all $X = D, D^*, J/\psi$
- Multiplicative factor very large leading to $\Delta = O(100)$

- Still within the bounds derived in [Bobeth, Haisch] on $(\tau \tau)(\bar{s}b)$ operators
- SM negligible: $C_{9(10)}^{SM} \simeq (-)4$ at $\mu = O(m_b)$

	Implications	
Branching ratios		

Following our previous result,

$$\begin{split} &\operatorname{Br}\left(B_{s} \to \tau^{+}\tau^{-}\right) &= & \left(\frac{\Delta}{C_{10}^{\mathrm{SM}}}\right)^{2} \operatorname{Br}\left(B_{s} \to \tau^{+}\tau^{-}\right)_{\mathrm{SM}}, \\ &\operatorname{Br}\left(B \to K\tau^{+}\tau^{-}\right) &= & (8.8 \pm 0.8) \times 10^{-9} \Delta^{2}, \\ &\operatorname{Br}\left(B \to K^{*}\tau^{+}\tau^{-}\right) &= & (10.1 \pm 0.8) \times 10^{-9} \Delta^{2}, \\ &\operatorname{Br}\left(B_{s} \to \phi\tau^{+}\tau^{-}\right) &= & (9.1 \pm 0.5) \times 10^{-9} \Delta^{2}, \end{split}$$

For the last three branching ratios,

- Neglecting the SM short-distance contribution.
- Neglecting the SM long-distance contribution: taking into account neither $\psi(2S)$ (at most a few 10⁻⁶ to Br) nor $c\bar{c}$ continuum.
- Integrating over whole allowed kinematic range.
- **Typical enhancement by** 10^3 compared to SM value.

Implications

Illustrating the correlation

 $R_{D^{(*)}}$ and $b
ightarrow s au^+ au^-$ correlated from fairly general assumptions,

- Deviations in $b \to c \tau^- \bar{\nu}_{\tau}$ decays from NP in left-handed four-fermion vector operator,
- NP due to physics from scale larger than electroweak scale,
- Contribution to $b \rightarrow s \nu_{\tau} \bar{\nu}_{\tau}$ is suppressed
- Pure 3rd-gen coupling disfavoured by precision data
- $\Rightarrow b \to s \tau^+ \tau^-$ processes dominated by NP approximately three orders of magnitude larger than SM
- $b
 ightarrow s au^+ au^-$ interesting processes by themselves
 - $B \to K\tau^+\tau^-$, $B \to K^*\tau^+\tau^-$ and $B_s \to \phi\tau^+\tau^-$ branching ratios: SM and NP dependence on $C_9^{\tau\tau}$, $C_{10}^{\tau\tau}$, $C_{9'}^{\tau\tau}$ and $C_{10'}^{\tau\tau}$
 - **O**ther observables related to τ polarisation discussed in [Kamenik et al]

(日)

Thank you

・ロト・日本・日本・日本・日本

Bernat Capdevila Searching for NP in b
ightarrow s au au decays

Institut de Física d'Altes Energies (IFAE)