Tau mass measurement at BESIII

Zhang Jianyong
On behalf of BESIII collaboration

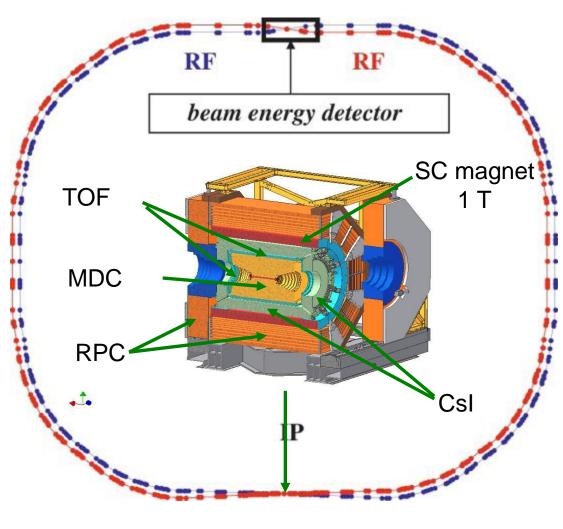
The 15th international workshop on tau lepton physics

Outline

- ➤ Motivation
- ➤ BEPCII and BESIII
- > Beam energy measurement system
- > Data taking scenario
- > Tau mass measurement at BESIII
- > Summary

Motivation

M_τ is a fundamental parameter of the standard model


e,
$$\mu$$
: Δ m/m ~10⁻⁸ , τ : Δ m/m ~9.0 × 10⁻⁵

Lepton universality test:

$$\left(\frac{G_{\tau}}{G_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{Br(\tau \to ev\bar{\nu})}{Br(\mu \to ev\bar{\nu})}$$
 Sensitive to m_{τ}^{5}

➤ Beam energy measurement system is built to determine the energy precisely

BEPCII and BESIII

BEPCII

Energy region: 2.0 ~ 4.6GeV

Luminosity: 10³³ cm⁻²s⁻¹

1.89GeV

bunch: 2×93

current: $2\times0.91A$

BESIII

DC: position: 135 µm,

momentum: 0.5%@1GeV,

 $\sigma_{dE/dx}$: 6%

EMC: 2.5%@1GeV

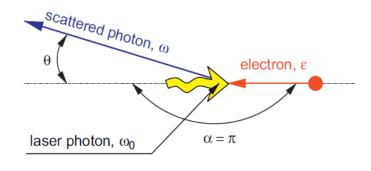
6 (9) mm

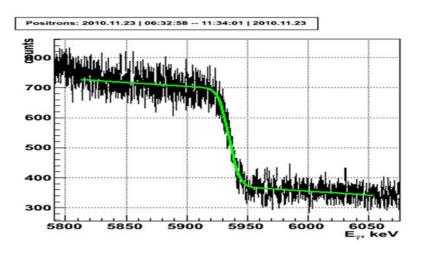
TOF: 65 ps (B)

60 ps (EC)

μ counter : 9 layers (B)

8 layers (EC)


4


Zhang Jianyong

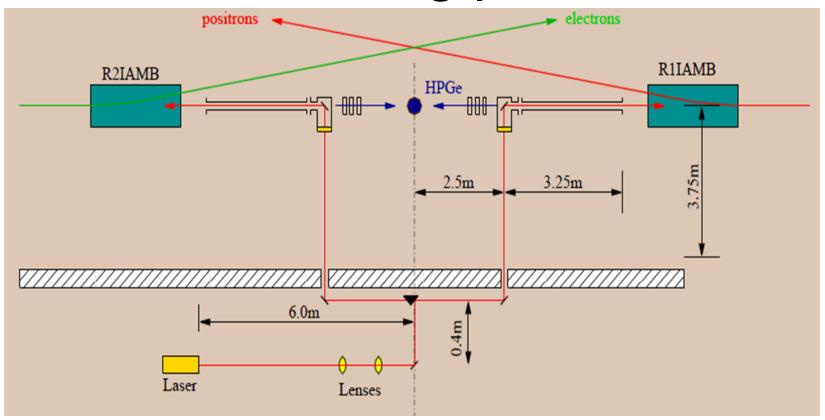
Outline

- ➤ Motivation
- ➤ BEPCII and BESIII
- > Beam energy measurement system
- > Data taking scenario
- > Tau mass measurement at BESIII
- ➤ Summary

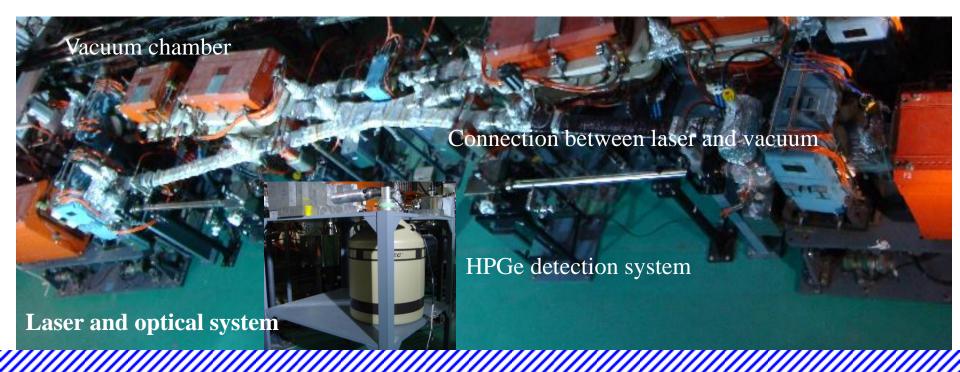
Beam energy measurement system (BEMS)

Energy of scattered photons:

$$\omega = \omega_0 \frac{1 - \beta \cos \alpha}{1 - \beta \cos \theta + \frac{\omega_0}{\varepsilon} (1 - \cos \Theta)}$$


Head on collision, backscattered photons:

$$\omega_{max} = \frac{\varepsilon^2}{\varepsilon + m_e^2 / 4\omega_0^2},$$


We get the beam energy:

$$\varepsilon = \frac{\omega_{max}}{2} \left[1 + \sqrt{1 + \frac{m_e^2}{\omega_0 \omega_{max}}} \right].$$

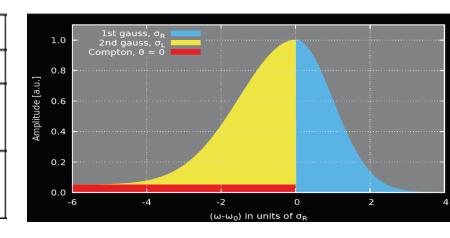
BEMS layout at BEPCII north crossing point

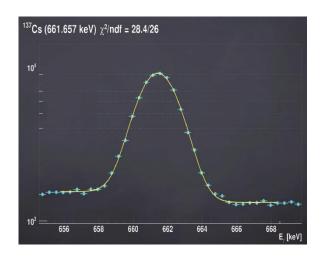
Installation of BEMS

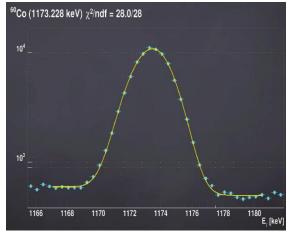
2018/09/24-28

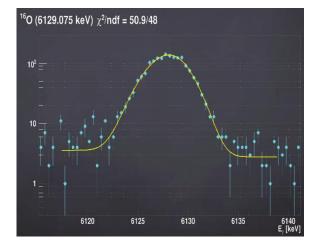
Zhang Jianyong

Detection system

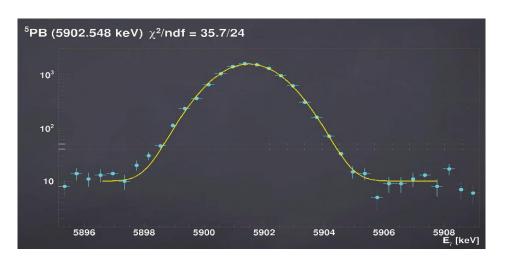

- Ortec n type coaxial HPGe detector
- > Typical parameter of HPGe detector
 - Φ: 6 cm, height 6 cm
 - Energy resolution $\delta\omega/\omega$: 10⁻³
 - relative efficiency: 30%
- ➤ lead and paraffin are added to suppress neutrons and low energy photons
- The detector is connected to multichannel analyzer with Ortec DSpec Pro^{TM} (integrated nonlinearity ± 250 ppm)






Detector calibration

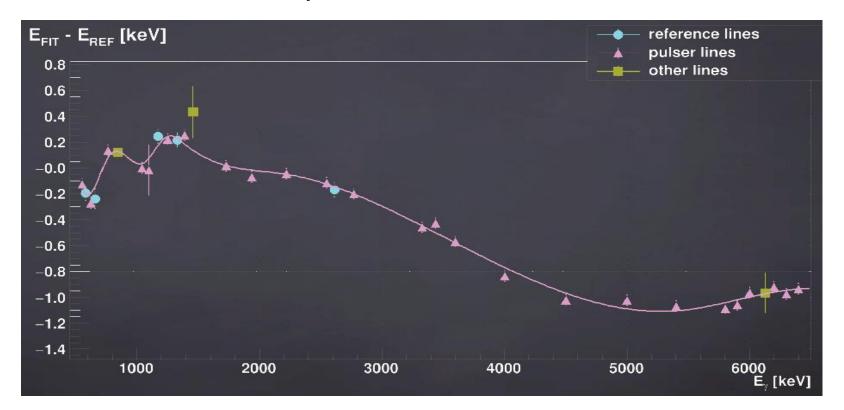
Source	Decay half-time, years	γ-rays energies, keV		
137Cs	30.07	661.657 ± 0.003		
⁶⁰ Co	5.27	1173.228 ± 0.003		
	5.21	1332.492 ± 0.004		
²²⁸ Th (²⁰⁸ Tl)	1.91 (3 min)	583.187 ± 0.002		
	1.91 (3 11111)	2614.511 ± 0.010		

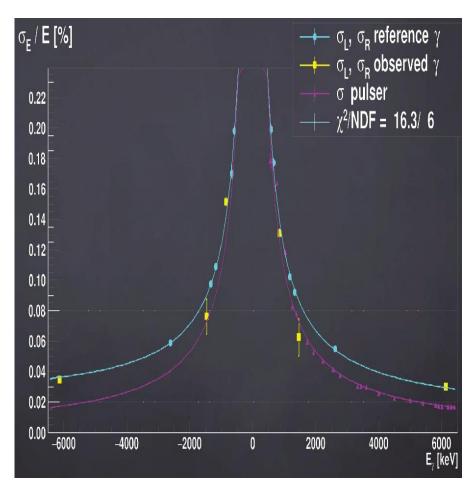


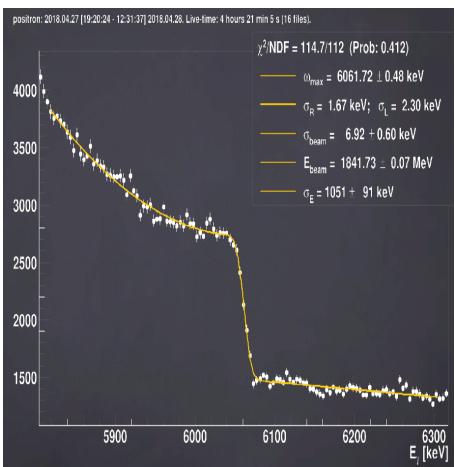
Detector calibration(II)

Interested energy are wide and radiation sources are limited

The nonlinearity of multichannel analyzer's scale is calibrated using the precise pulse generator (BNC-PB5) with integral nonlinearity ± 15 ppm jitter ± 10 ppm

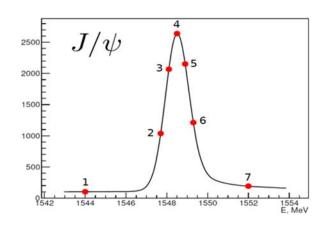


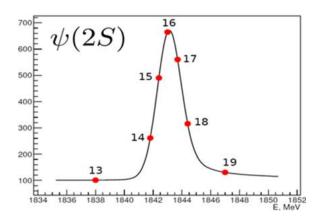

$$E_{ref,i}$$
 [keV] = P_0 [keV] + P_1 [keV/V] · A_i [V]


Detector calibration(III)

By tuning parameters p_0 and p_1 and comparing the reference lines and pulser lines :

Calibration and Compton edge fit


Outline

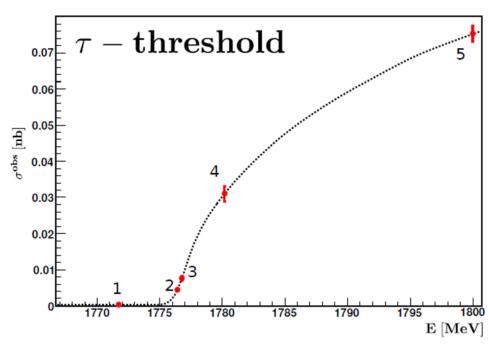

- ➤ Motivation
- ➤ BEPCII and BESIII
- > Beam energy measurement system
- ➤ Data taking scenario
- > Tau mass measurement at BESIII
- ➤ Summary

Data taking scenario

Three stages:

- J/Ψ scan for BEMS calibration and beam energy spread measurement (7 points)
- tau mass scan near tau threshold (5 points)
- Ψ' scan for BEMS calibration and beam energy spread measurement (7 points)

Data taking scenario (II)


Three energy regions:

- ➤ Low energy region
 Point 1, 14 pb⁻¹, to determine background
- ➤ Near threshold

 Point 2, 39 pb⁻¹ and point 3,

 26 pb⁻¹, to determine tau mass
- ➤ High energy region
 Point 4, 7 pb⁻¹ for X² check
 Point 5, 14 pb⁻¹ to determine detection efficiency

Total lum. ~100pb⁻¹, uncertainty: 0.1MeV

We obtain more than 130 pb⁻¹ tau scan data!

Event selection

Two good charged tracks

 $|v_z| < 10 \text{ cm}, |v_{rxy}| < 1 \text{ cm}, |\cos(\theta)| < 0.93$ 0.05

No good neutral tracks

eµ: Muons:

E/p < 0.8, 0.1<E<0.3, MuC hit >0, $\Delta tof(\mu) < 0.35$ ns

Electrons:

0.8 < E/p < 1.1, $\Delta tof (e) < 0.35 ns$

 $e\pi$: Pions:

Not μ , E/p < 0.8, $0.7 , <math>\Delta tof (\mu) < 0.35 ns$

Tau mass fit

Tau mass is obtained using maximum likelihood fit

Free parameters are: $M\tau$, ϵ , σ_{bg}

The statistic error of two modes (eμ, eπ) is about 70 keV

Systematic uncertainty is in progress

tau mass scan at BESIII in 2011

Systematic errors					
Source	keV				
Theo.	10				
E _{Spread}	16				
E _{Scale}	+22 -86				
E _{Selection}	50				
Eff.	48				
Bg.	40				
shape					
Lum.	6				
Sum	+100 -130				

 $\mathbf{M}_{\tau} = 1776.91 \pm 0.12 \text{ (stat.)} ^{+ 0.10}_{- 0.13} \text{ (sys.) MeV}$

 $\delta M_{\tau} = 0.171 \text{ MeV}, \quad \delta M_{\tau} / M_{\tau} = 9.6 \times 10^{-5}$

PDG2012: 1776.82 \pm 0.16 MeV

2018/09/24-28 Zhang Jianyong 19

Data comparison

	J/ψ	ψ'	т (pb-1)					
	(pb-1)	(pb-1)	3540	3553	3554	3560	3600	
			MeV	MeV	MeV	MeV	MeV	
2011	1.5	7.5	4.3	0	5.6	3.9	9.6	
2018	32.6	67.2	25.5	42.6	27.1	8.3	13.9	

In 2011, two modes($e\mu$, $e\pi$), 454 events, extend 13 decay modes, We obtained 1171 events

$$\sigma_{\text{stat.}}$$
 will be decrease to $~\frac{0.070}{\sqrt{1171/454}} = 0.044~\text{MeV}$

 σ_{syst} is estimated to be 0.090 MeV if σ_{total} is required to be less than 0.1 MeV

Summary

Beam energy measurement system is commissioning well at BEPCII

Tau threshold scan was performed at BESIII this spring, more than 130 pb⁻¹ data were collected

The further study on statistic and systematic uncertainty are in progress, the total uncertainty of tau mass is expected to be less than 0.1 MeV

Thank you for your concern!

tau mass scan @BESIII in 2011

In order to check the performance of the detector, the physical software and the BEMS, the τ scan was performed in the winter of 2011.

to resonances J/ ψ and ψ ', 7 points are scanned, the integral luminosity are 1.5 pb⁻¹, 7.0 pb⁻¹ separately

4 points near t threshold are scanned, 23.4 pb⁻¹

PRD 90, 012001 (2014)

Scan	$E_{\mathrm{CM}} \; (\mathrm{MeV})$	$\mathcal{L}(\mathrm{nb}^{-1})$
J/ψ	3088.7	78.5 ± 1.9
	3095.3	219.3 ± 3.1
	3096.7	243.1 ± 3.3
	3097.6	206.5 ± 3.1
	3098.3	223.5 ± 3.2
	3098.8	216.9 ± 3.1
	3103.9	317.3 ± 3.8
au	3542.4	4252.1 ± 18.9
	3553.8	5566.7 ± 22.8
	3561.1	3889.2 ± 17.9
	3600.2	9553.0 ± 33.8
ψ'	3675.9	787.0 ± 7.2
	3683.7	823.1 ± 7.4
	3685.1	832.4 ± 7.5
	3686.3	1184.3 ± 9.1
	3687.6	1660.7 ± 11.0
	3688.8	767.7 ± 7.2
	3693.5	1470.8 ± 10.3

tau mass scan @BESIII in 2011

final state	1		2		3		4		total	
	Data	MC	Data	MC	Data	MC	Data	MC	Data	MC
ee	0	0	4	3.7	13	12.2	84	76.1	101	92.0
$e\mu$	0	0	8	9.1	35	31.4	168	192.6	211	233.1
$e\pi$	0	0	8	8.6	33	29.7	202	184.4	243	222.6
eK	0	0	0	0.5	2	1.8	16	16.9	18	19.3
$\mu\mu$	0	0	2	2.9	8	9.2	49	56.3	59	68.4
$\mu\pi$	0	0	4	3.9	11	14.1	89	86.7	104	104.7
μK	0	0	0	0.2	3	0.8	7	9.0	10	10.1
$\pi\pi$	0	0	1	2.0	5	7.7	57	54.0	63	63.8
πK	0	0	1	0.3	0	0.8	10	8.2	11	9.3
KK	0	0	0	0.0	1	0.1	1	0.3	2	0.4
e ho	0	0	3	6.1	19	20.6	142	132.0	164	158.7
μho	0	0	8	3.3	18	11.8	52	63.3	68	78.5
πho	0	0	5	3.4	15	10.8	97	96.0	117	110.2
Total	0	0	44	44.2	153	151.2	974	975.7	1171	1171.0

PRD 90, 012001 (2014)

24