# Tau mass measurement at BESIII Zhang Jianyong On behalf of BESIII collaboration The 15<sup>th</sup> international workshop on tau lepton physics ## **Outline** - ➤ Motivation - ➤ BEPCII and BESIII - > Beam energy measurement system - > Data taking scenario - > Tau mass measurement at BESIII - > Summary ## Motivation M<sub>τ</sub> is a fundamental parameter of the standard model e, $$\mu$$ : $\Delta$ m/m ~10<sup>-8</sup> , $\tau$ : $\Delta$ m/m ~9.0 × 10<sup>-5</sup> Lepton universality test: $$\left(\frac{G_{\tau}}{G_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{Br(\tau \to ev\bar{\nu})}{Br(\mu \to ev\bar{\nu})}$$ Sensitive to $m_{\tau}^{5}$ ➤ Beam energy measurement system is built to determine the energy precisely ### BEPCII and BESIII #### **BEPCII** Energy region: 2.0 ~ 4.6GeV Luminosity: 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> 1.89GeV bunch: 2×93 current: $2\times0.91A$ BESIII DC: position: 135 µm, momentum: 0.5%@1GeV, $\sigma_{dE/dx}$ : 6% EMC: 2.5%@1GeV 6 (9) mm TOF: 65 ps (B) 60 ps (EC) μ counter : 9 layers (B) 8 layers (EC) 4 **Zhang Jianyong** ### Outline - ➤ Motivation - ➤ BEPCII and BESIII - > Beam energy measurement system - > Data taking scenario - > Tau mass measurement at BESIII - ➤ Summary # Beam energy measurement system (BEMS) Energy of scattered photons: $$\omega = \omega_0 \frac{1 - \beta \cos \alpha}{1 - \beta \cos \theta + \frac{\omega_0}{\varepsilon} (1 - \cos \Theta)}$$ Head on collision, backscattered photons: $$\omega_{max} = \frac{\varepsilon^2}{\varepsilon + m_e^2 / 4\omega_0^2},$$ We get the beam energy: $$\varepsilon = \frac{\omega_{max}}{2} \left[ 1 + \sqrt{1 + \frac{m_e^2}{\omega_0 \omega_{max}}} \right].$$ # BEMS layout at BEPCII north crossing point ## Installation of BEMS 2018/09/24-28 Zhang Jianyong # Detection system - Ortec n type coaxial HPGe detector - > Typical parameter of HPGe detector - Φ: 6 cm, height 6 cm - Energy resolution $\delta\omega/\omega$ : 10<sup>-3</sup> - relative efficiency: 30% - ➤ lead and paraffin are added to suppress neutrons and low energy photons - The detector is connected to multichannel analyzer with Ortec DSpec $Pro^{TM}$ (integrated nonlinearity $\pm 250$ ppm) ### Detector calibration | Source | Decay half-time, years | γ-rays energies, keV | | | |----------------------------------------|------------------------|----------------------|--|--| | 137Cs | 30.07 | $661.657 \pm 0.003$ | | | | <sup>60</sup> Co | 5.27 | $1173.228 \pm 0.003$ | | | | | 5.21 | $1332.492 \pm 0.004$ | | | | <sup>228</sup> Th ( <sup>208</sup> Tl) | 1.91 (3 min) | $583.187 \pm 0.002$ | | | | | 1.91 (3 11111) | $2614.511 \pm 0.010$ | | | # Detector calibration(II) Interested energy are wide and radiation sources are limited The nonlinearity of multichannel analyzer's scale is calibrated using the precise pulse generator (BNC-PB5) with integral nonlinearity $\pm 15$ ppm jitter $\pm 10$ ppm $$E_{ref,i}$$ [keV] = $P_0$ [keV] + $P_1$ [keV/V] · $A_i$ [V] # Detector calibration(III) By tuning parameters $p_0$ and $p_1$ and comparing the reference lines and pulser lines : # Calibration and Compton edge fit ## **Outline** - ➤ Motivation - ➤ BEPCII and BESIII - > Beam energy measurement system - ➤ Data taking scenario - > Tau mass measurement at BESIII - ➤ Summary # Data taking scenario #### Three stages: - J/Ψ scan for BEMS calibration and beam energy spread measurement (7 points) - tau mass scan near tau threshold (5 points) - Ψ' scan for BEMS calibration and beam energy spread measurement (7 points) # Data taking scenario (II) #### Three energy regions: - ➤ Low energy region Point 1, 14 pb<sup>-1</sup>, to determine background - ➤ Near threshold Point 2, 39 pb<sup>-1</sup> and point 3, 26 pb<sup>-1</sup>, to determine tau mass - ➤ High energy region Point 4, 7 pb<sup>-1</sup> for X<sup>2</sup> check Point 5, 14 pb<sup>-1</sup> to determine detection efficiency Total lum. ~100pb<sup>-1</sup>, uncertainty: 0.1MeV We obtain more than 130 pb<sup>-1</sup> tau scan data! #### **Event selection** #### Two good charged tracks $|v_z| < 10 \text{ cm}, |v_{rxy}| < 1 \text{ cm}, |\cos(\theta)| < 0.93$ 0.05 #### No good neutral tracks eµ: Muons: E/p < 0.8, 0.1<E<0.3, MuC hit >0, $\Delta tof(\mu) < 0.35$ ns **Electrons:** 0.8 < E/p < 1.1, $\Delta tof (e) < 0.35 ns$ $e\pi$ : Pions: Not $\mu$ , E/p < 0.8, $0.7 , <math>\Delta tof (\mu) < 0.35 ns$ #### Tau mass fit Tau mass is obtained using maximum likelihood fit Free parameters are: $M\tau$ , $\epsilon$ , $\sigma_{bg}$ The statistic error of two modes (eμ, eπ) is about 70 keV Systematic uncertainty is in progress ## tau mass scan at BESIII in 2011 | Systematic errors | | | | | | |------------------------|--------------|--|--|--|--| | Source | keV | | | | | | Theo. | 10 | | | | | | E <sub>Spread</sub> | 16 | | | | | | E <sub>Scale</sub> | +22<br>-86 | | | | | | E <sub>Selection</sub> | 50 | | | | | | Eff. | 48 | | | | | | Bg. | 40 | | | | | | shape | | | | | | | Lum. | 6 | | | | | | Sum | +100<br>-130 | | | | | $\mathbf{M}_{\tau} = 1776.91 \pm 0.12 \text{ (stat.)} ^{+ 0.10}_{- 0.13} \text{ (sys.) MeV}$ $\delta M_{\tau} = 0.171 \text{ MeV}, \quad \delta M_{\tau} / M_{\tau} = 9.6 \times 10^{-5}$ PDG2012: 1776.82 $\pm$ 0.16 MeV 2018/09/24-28 Zhang Jianyong 19 # Data comparison | | J/ψ | ψ' | т (pb-1) | | | | | | |------|--------|--------|----------|------|------|------|------|--| | | (pb-1) | (pb-1) | 3540 | 3553 | 3554 | 3560 | 3600 | | | | | | MeV | MeV | MeV | MeV | MeV | | | 2011 | 1.5 | 7.5 | 4.3 | 0 | 5.6 | 3.9 | 9.6 | | | 2018 | 32.6 | 67.2 | 25.5 | 42.6 | 27.1 | 8.3 | 13.9 | | In 2011, two modes( $e\mu$ , $e\pi$ ), 454 events, extend 13 decay modes, We obtained 1171 events $$\sigma_{\text{stat.}}$$ will be decrease to $~\frac{0.070}{\sqrt{1171/454}} = 0.044~\text{MeV}$ $\sigma_{\text{syst}}$ is estimated to be 0.090 MeV if $\sigma_{\text{total}}$ is required to be less than 0.1 MeV # Summary Beam energy measurement system is commissioning well at BEPCII Tau threshold scan was performed at BESIII this spring, more than 130 pb<sup>-1</sup> data were collected The further study on statistic and systematic uncertainty are in progress, the total uncertainty of tau mass is expected to be less than 0.1 MeV # Thank you for your concern! ## tau mass scan @BESIII in 2011 In order to check the performance of the detector, the physical software and the BEMS, the $\tau$ scan was performed in the winter of 2011. to resonances J/ $\psi$ and $\psi$ ', 7 points are scanned, the integral luminosity are 1.5 pb<sup>-1</sup>, 7.0 pb<sup>-1</sup> separately 4 points near t threshold are scanned, 23.4 pb<sup>-1</sup> PRD 90, 012001 (2014) | Scan | $E_{\mathrm{CM}} \; (\mathrm{MeV})$ | $\mathcal{L}(\mathrm{nb}^{-1})$ | |----------|-------------------------------------|---------------------------------| | $J/\psi$ | 3088.7 | $78.5 \pm 1.9$ | | | 3095.3 | $219.3 \pm 3.1$ | | | 3096.7 | $243.1 \pm 3.3$ | | | 3097.6 | $206.5 \pm 3.1$ | | | 3098.3 | $223.5 \pm 3.2$ | | | 3098.8 | $216.9 \pm 3.1$ | | | 3103.9 | $317.3 \pm 3.8$ | | au | 3542.4 | $4252.1 \pm 18.9$ | | | 3553.8 | $5566.7 \pm 22.8$ | | | 3561.1 | $3889.2 \pm 17.9$ | | | 3600.2 | $9553.0 \pm 33.8$ | | $\psi'$ | 3675.9 | $787.0 \pm 7.2$ | | | 3683.7 | $823.1 \pm 7.4$ | | | 3685.1 | $832.4 \pm 7.5$ | | | 3686.3 | $1184.3 \pm 9.1$ | | | 3687.6 | $1660.7\pm11.0$ | | | 3688.8 | $767.7 \pm 7.2$ | | | 3693.5 | $1470.8\pm10.3$ | | | | | ## tau mass scan @BESIII in 2011 | final state | 1 | | 2 | | 3 | | 4 | | total | | |-------------|------|----|------|------|------|-------|------|-------|-------|--------| | | Data | MC | | ee | 0 | 0 | 4 | 3.7 | 13 | 12.2 | 84 | 76.1 | 101 | 92.0 | | $e\mu$ | 0 | 0 | 8 | 9.1 | 35 | 31.4 | 168 | 192.6 | 211 | 233.1 | | $e\pi$ | 0 | 0 | 8 | 8.6 | 33 | 29.7 | 202 | 184.4 | 243 | 222.6 | | eK | 0 | 0 | 0 | 0.5 | 2 | 1.8 | 16 | 16.9 | 18 | 19.3 | | $\mu\mu$ | 0 | 0 | 2 | 2.9 | 8 | 9.2 | 49 | 56.3 | 59 | 68.4 | | $\mu\pi$ | 0 | 0 | 4 | 3.9 | 11 | 14.1 | 89 | 86.7 | 104 | 104.7 | | $\mu K$ | 0 | 0 | 0 | 0.2 | 3 | 0.8 | 7 | 9.0 | 10 | 10.1 | | $\pi\pi$ | 0 | 0 | 1 | 2.0 | 5 | 7.7 | 57 | 54.0 | 63 | 63.8 | | $\pi K$ | 0 | 0 | 1 | 0.3 | 0 | 0.8 | 10 | 8.2 | 11 | 9.3 | | KK | 0 | 0 | 0 | 0.0 | 1 | 0.1 | 1 | 0.3 | $^2$ | 0.4 | | e ho | 0 | 0 | 3 | 6.1 | 19 | 20.6 | 142 | 132.0 | 164 | 158.7 | | $\mu ho$ | 0 | 0 | 8 | 3.3 | 18 | 11.8 | 52 | 63.3 | 68 | 78.5 | | $\pi ho$ | 0 | 0 | 5 | 3.4 | 15 | 10.8 | 97 | 96.0 | 117 | 110.2 | | Total | 0 | 0 | 44 | 44.2 | 153 | 151.2 | 974 | 975.7 | 1171 | 1171.0 | PRD 90, 012001 (2014) 24