Conclusions

Tau Polarisation Measurement in $Z/\gamma^* \rightarrow \tau \tau$ Decays at LHC

Benedict Winter on behalf of ATLAS and CMS

Amsterdam, September 25, 2018

Tau Polarisation around Z Boson Pole

Tau polarisation is

 $P_{\tau} = \frac{\sigma_{\text{right-handed}} - \sigma_{\text{left-handed}}}{\sigma_{\text{right-handed}} + \sigma_{\text{left-handed}}}$

for the τ^- lepton.

- Pure $Z \to \tau \tau$: $-P_{\tau} \approx A_{\ell} = \frac{2g_{V\ell}g_{A\ell}}{g_{V\ell}^2 + g_{A\ell}^2} = 0.149 \approx 2 8\sin^2 \theta_{W}$
- Pure $\gamma \rightarrow \tau \tau$: $P_{\tau} = 0$
- Z boson dominates for $m_{Z/\gamma^*} \approx m_Z$
- + $P_{ au} = -0.1517 \pm 0.0019$ within $66 < m_{Z/\gamma^*} < 116$ GeV predicted by Alpgen+Pythia6+Tauola

- Measure P_τ in a fiducial region and in 66 GeV $< m_{Z/\gamma^*} < 116 \, {\rm GeV}$ range. Use 20.2 fb $^{-1}$ dataset with $\sqrt{s} = 8 \, {\rm TeV}$
- Z bosons produced via qqZ vertex ⇒ complementary to precision measurements in ee collisions
- Second ${\cal P}_{\tau}$ measurement in hadron collisions. New experimental techniques
 - Evaluation of signal modelling uncertainties
 - Precise estimation of the significant backgrounds
- Previously found $P_{\tau} \in [-1.00, -0.91]$ with 95% credibility in $W \rightarrow \tau \nu$ using 24 pb⁻¹ ATLAS data with $\sqrt{s} = 7 \text{ TeV}$ [1204.6720]

generated Y

- Mostly $\tau \to \rho (\to \pi^{\pm} \pi^{0}) \nu$ decays, where ρ meson has spin 1
- Left- (right-) handed: ρ with large x_{vis} are transversely (longitudinally) polarised, so pions have similar (different) momenta. Observable:

$$\Upsilon = \frac{E_{h^{\pm}} - E_{\pi^0}}{\frac{E_{h^{\pm}} + E_{\pi^0}}{5}}$$

Reconstructed Υ Observable \frown Figures [1709.03490]

ATLAS Run 1: decay mode and π^{0} momenta not reconstructed \Rightarrow Use

$$\Upsilon = \frac{E_{h^\pm} - E_{\pi^0}}{E_{h^\pm} + E_{\pi^0}} \approx \frac{2 \cdot p_{\mathrm{T}}^{h^\pm}}{p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}}} - 1,$$

where h^{\pm} denotes π^{\pm} and \mathcal{K}^{\pm} . Select taus with one h^{\pm}

Signal Signature and Event Selection

Lepton selection:

- Single electron or muon trigger
- $p_{\mathrm{T}}^{ au_{\mathrm{lep}}} > 26\,\mathrm{GeV}$, $|\eta^{ au_{\mathrm{lep}}}| < 2.5$
- Pass identification and isolation τ_{had} selection:
 - $p_{\mathrm{T}}^{ au_{\mathrm{had-vis}}} > 20\,\mathrm{GeV}$, $|\eta^{ au_{\mathrm{had-vis}}}| < 2.5$
 - Pass medium identification
 - Single-prong

Event topology:

- Opposite lepton and $\tau_{\rm had}$ electric charges
- $m_{\rm T} < 30 \, {\rm GeV}$
- $\sum \Delta \phi < 3.5$
- $40 < m_{\rm vis} < 85 \,{\rm GeV}$
- Separate $\tau_e{-}\tau_{\rm had}$ and $\tau_\mu{-}\tau_{\rm had}$ channels

Suppression of $W \rightarrow \ell \nu$ Background \bullet Figures [1709.03490]

- *W*+jets control region: $m_{\rm T} > 70 \,{\rm GeV}$ and $\sum \Delta \phi \ge 3.5$
- Shape: from data in W+jets control region with small correction
- Normalisation: scale using simulation

$$N_{\text{estimated}}^{\text{signal region}} = N_{\text{observed}}^{W+\text{jets CR}} \cdot \frac{N_{\text{signal region}}^{\text{signal region}}}{N_{\text{simulated}}^{W+\text{jets CR}}}$$

Multijet Background Estimate • Figures [1709.03490]

Expected Υ Distributions in Signal Region \bullet Figures [1709.03490]

Tau polarisation shown as predicted by simulation

- Signal purity: 68% (τ_e - τ_{had} channel), 84% (τ_μ - τ_{had} channel)
- Minor $Z/\gamma^* \to \ell \ell$ and top pair backgrounds from simulation

Example Systematic: au_{had} Identification • Figures [1709.03490]

Impact of tau identification (ID) on shape of Υ distribution:

- Estimate uncertainties in each $\tau_{\rm had}$ ID input variable in $W+{\rm jets}\;{\rm CR}$
- Propagate differences to signal in signal region and consider shape variations as uncertainties

Conclusions

Extraction of Tau Polarisation • Figures [1709.03490]

 $\tau_{e}\text{--}\tau_{\rm had}$ channel

 τ_{μ} – τ_{had} channel

- Extended binned maximum likelihood fit
- Simultaneously fit signal and same-sign regions in both channels
- Polarisation extracted from relative normalisation of left- and right-handed signal templates
- Nuisance parameters control template variations within uncertainties

Right-ha

Multijel

0.5

0.5

1.5 r

1.5 r

Right-handed

Multijet

CMS Performance Studies

Conclusions

• Measurement of $\sin^2\theta_{\rm W}$ would require correction for $\gamma\to\tau\tau$ contribution and interference $$_{15}$$

CMS: Study with Single-Prong au_{had} Decays \bullet Figure CMS DP 2016/60

- Select $Z/\gamma^* \to \tau \tau$ decays with one $\tau \to \mu \nu \nu$ decay and one single-prong τ_{had} decay from 2.3 fb⁻¹ dataset with $\sqrt{s} = 13 \text{ TeV}$
- Require reconstructed π^0 in τ_{had} decay. Reconstruct

$$\Upsilon = \frac{E_{h^{\pm}} - E_{\pi^0}}{E_{h^{\pm}} + E_{\pi^0}}$$

• Stat-only fit: $P_{\tau} = -0.336 \pm 0.037$ in signal region (predict: -0.33)

CMS: Study with Three-Prong au_{had} Decays • Figure CMS DP 2016/60

- Two thirds of three-prong decays proceed via $a_1
 ightarrow
 ho \pi
 ightarrow \pi \pi$
- Construct so-called optimal observable ω_{a_1} from three τ_{had} decay angles assuming $m_{Z/\gamma^*} = m_Z$ and $p_{T,Z} = 0$
- Stat-only fit to 19.7 fb⁻¹ data with $\sqrt{s} = 8$ TeV yields $P_{\tau} = -0.355 \pm 0.064$ in signal region (predict: -0.32)

Conclusions

- ATLAS measured tau polarisation in $Z/\gamma^* \rightarrow \tau \tau$ decays using single-prong τ_{had} decays as spin analysers. Precision: 0.05
- CMS performed advanced performance studies using single- and three-prong $\tau_{\rm had}$ decays and decay mode identification

Great prospects for further measurements in $Z/\gamma^* \to \tau \tau$ and other processes

Backup: Tau Decays: $\tau \rightarrow \ell \nu \nu$ (35%)

- Three-body decay into left-handed fermions
- Unobservable neutrinos reduce sensitivity of x_{vis} w.r.t. $\tau \to \pi^{\pm} \nu$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}x_{\mathsf{vis}}} = \frac{G_{\mathsf{F}}^2 m_{\tau}^5}{192\pi^3} \left(\frac{5}{3} - 3x_{\mathsf{vis}}^2 + \frac{4}{3}x_{\mathsf{vis}}^3 - \lambda_{\tau} \left(-\frac{1}{3} + 3x_{\mathsf{vis}}^2 - \frac{8}{3}x_{\mathsf{vis}}^3\right)\right)$$

Backup: Event Generators (Table [1709.03490])

Sample	Event generator	PDF	UE tune
$\begin{array}{c} (Z/\gamma^* \to \tau\tau) + \mathrm{jets} \\ (Z/\gamma^* \to \tau\tau) + \mathrm{jets} \\ (Z/\gamma^* \to \tau\tau) + \mathrm{jets} \\ (Z/\gamma^* \to \tau\tau) + \mathrm{jets} \end{array}$	Alpgen 2.14 [3] + Pythia6.427 [4]	CTEQ6L1 [10]	Perugia2011C [11]
	Pythia 8.160 [20]	CTEQ6L1	AU2 [21]
	Powheg r1556 [22,23,24] + Pythia 8.160	CT10 [25]	AUET2 [31]
	Alpgen 2.14 + Herwig 6.5/Jimmy 4.3 [26,27]	CTEQ6L1	Perugia2011C
Top pairs + jets	Powheg r2129 + Pythia 6.426	CT10	AUET2
$\begin{array}{l} (W \rightarrow e\nu) + \text{jets} \\ (W \rightarrow \mu\nu) + \text{jets} \\ (W \rightarrow \tau\nu) + \text{jets} \end{array}$	Alpgen $2.14 + Pythia 6.427$	CTEQ6L1	Perugia2011C
	Alpgen $2.14 + Pythia 6.427$	CTEQ6L1	Perugia2011C
	Alpgen $2.14 + Pythia 6.427$	CTEQ6L1	Perugia2011C
$\begin{array}{c} (Z/\gamma^* \to ee) + {\rm jets} \\ (Z/\gamma^* \to \mu\mu) + {\rm jets} \end{array}$	Alpgen $2.14 + Pythia 6.427$	CTEQ6L1	Perugia2011C
	Alpgen $2.14 + Pythia 6.427$	CTEQ6L1	Perugia2011C

Backup: Event Yields Table [1709.03490]

Process	$\tau_e – \tau_{\rm had}$ channel	τ_{μ} – τ_{had} channel
Data	32243	32347
Total expected	$32000 {}^{+1600}_{-1600}$	$33000 {}^{+1800}_{-1800}$
Left-handed	$13800 \ ^{+1100}_{-1100}$	$17000 \stackrel{+1400}{_{-1300}}$
Right-handed	$7800 \begin{array}{c} +600 \\ -600 \end{array}$	$9600 \begin{array}{c} +700 \\ -700 \end{array}$
Outside mass-selected region	$430 {}^{+40}_{-40}$	$550 \begin{array}{c} +40 \\ -40 \end{array}$
W+jets	$2240 \begin{array}{c} +260 \\ -240 \end{array}$	$2600 \ \ {}^{+210}_{-220}$
Multijet	$6200 \begin{array}{c} +600 \\ -600 \end{array}$	$2400 \ \ {}^{+270}_{-300}$
Top pair	$360 {}^{+40}_{-40}$	$390 {}^{+40}_{-40}$
$(Z/\gamma^* \to \ell\ell)$ +jets	$1210 \ ^{+140}_{-140}$	$360 {}^{+50}_{-40}$

Conclusions

Backup: The m_{vis} Requirement • Figures [1709.03490]

- Visible mass: $m_{\text{vis}} = \sqrt{\left(p^{\text{lepton}} + p^{\tau_{\text{had-vis}}}\right)^2}$
- Cut eliminates interesting events with true $m_{Z/\gamma^*} \gg m_Z$. But would need dedicated measurement anyway

Backup: Suppression of $W \rightarrow \ell \nu$ Background

• Definition:
$$\sum \Delta \varphi = \varphi_1 + \varphi_2$$
,

• For signal: $\sum \Delta \varphi \lesssim \pi$. For background: $\sum \Delta \varphi > \pi$

Backup: Shape Correction in W+jets Estimate • Figure [1709.03490]

Backup: Opposite- and Same-Sign Shape Differences

Figures [1709.03490]

Systematics: Modelling of Signal Process • Figures [1709.03490]

- Compare nominal Alpgen+Pythia6 to Pythia8 and Powheg+Pythia8
- Reweigh various truth level distributions

Systematics: Tau Energy Reconstruction • Figures [1709.03490]

• Momentum reconstruction directly enters $\Upsilon = rac{2\cdot
ho_{T}^{\mathrm{Tack}}}{
ho_{T}^{\gamma}_{\mathrm{hadvis}}} - 1$,

• Energy scale (TES) and resolution (TER) uncertainties estimated separately for hadrons (π^{\pm}) and photons (from $\pi^0 \to \gamma\gamma$ decays)

Backup: Systematic Uncertainties • Tables [1709.03490]

Source of uncertainty	Number of parameters	Constraint	Steer variation of
Multijet estimate	40	None	one bin each
MC statistical	40	Poissonian	one bin each
Modelling of signal process	3	Gaussian	shape and normalisation
τ_{had} identification	5	Gaussian	shape or normalisation
Signal sample splitting	2	Gaussian	shape and normalisation
TES and TER	6	Gaussian	shape and normalisation
PDF	1	Gaussian	shape and normalisation
W+jets shape	2	Gaussian	shape
Other	34 or 36	Gaussian	normalisation

Source of uncertainty	σ_{P_τ} in mass-selected region	σ_{P_τ} in fiducial region
Modelling of signal process	± 0.026	± 0.022
$\tau_{\rm had}$ identification	± 0.020	± 0.024
MC statistical	± 0.016	± 0.019
Signal sample splitting	± 0.015	± 0.015
TES and TER	± 0.015	± 0.019
Multijet estimate	± 0.013	± 0.013
PDF	± 0.007	± 0.005
W+jets shape	± 0.002	± 0.003
Other	± 0.008	± 0.003
Total systematic uncertainty	± 0.040	± 0.039
Statistical uncertainty	± 0.015	± 0.016

Backup: Post Fit NP Values and Uncertainties • Figure [1709.03490]

- Υ very sensitive to TES \rightarrow TES parameters are constrained
- TER not measured before and pulled noticeably
- Other pulled parameters are analysis specific as well

Backup: Signature of $\tau \to \pi^{\pm} \pi^{0} \nu$ Decay in ATLAS Calorimeter

