Searches for new phenomena with tau leptons in the final state using the ATLAS detector

Masahiro Kuze
Tokyo Institute of Technology

TAU2018 Amsterdam 25/Sep/2018

The Large Hadron Collider

- · Completed in 2008, CERN, Geneva
- Physics runs in 2010 2012 (Run 1)
 and 2015 2018 (Run 2)

pp collisions at

$$\sqrt{s} = 7 \text{ TeV} (3.5 + 3.5) \text{ for } 2010-11$$

$$\sqrt{s} = 8 \text{ TeV} (4 + 4) \text{ for } 2012$$

- also Pb+Pb, p+Pb (not covered here)
- ·Long Shutdown (LS1) 2013-2014

•Run 2 from 2015 running @ $\sqrt{s} = 13$ TeV (design value = 14 TeV)

- ·LS2 planned 2019-2020
- •Run 3 till 2023

LHC luminosity

- Run 1
 - -2011, ~5 fb⁻¹ @ 7TeV
 - -2012, ~20 fb⁻¹ @ 8TeV
- Peak lumi in Run 1
 0.75×10³⁴ cm⁻² s⁻¹
- Run2: peak lumi 2×10³⁴
 (2018) @ 13TeV (design: 1×10³⁴)
- 2015-16: 36.1 fb⁻¹
 - 2015-17: ~80 fb⁻¹

The ATLAS detector

- Inner Detector tracking (Pixel, SCT, TRT) $|\eta|$ < 2.5
- EM (LAr) and hadron (Tile+LAr) calorimeters $|\eta|$ <4.9
- Muon Spectrometer with toroid magnets $|\eta| < 2.7$

Search for BSM with τ 's

- 3rd generation (heaviest) lepton may be a unique clue of BSM signatures, e.g.
 - -stau in SUSY often considered to be lightest slepton
 - -strongest leptonic coupling to Higgs
- Experimentally more complicated than e/ μ
 - -largest BR to hadrons: separation from jets
 - -leptonic decays hard to distinguish from e/ μ
 - -includes at least one ν (missing E_T)
- Sophisticated identification methods
 - -Refer to talk by A.-C. Le Bihan

τ ID in ATLAS (in short)

- 1-track and 3-track $\tau_{had-vis}$ candidates, seeded from anti-k_t jets with R=0.4
- Identification using Boosted Decision Tree using calorimeter- and track-related variables
- loose, medium and tight working points
 - e.g. in W' $\rightarrow \tau \nu$ search, loose criteria are used
 - Efficiency ~ 60% @ p_T=100 GeV, 30% @ 2 TeV

References:

Run 1 paper: <u>EPJC75(2015)303</u> <u>1412.7086</u>

Run 2 update: ATL-PHYS-PUB-2015-045

Run 2 performance: <u>ATLAS-CONF-2017-029</u>

Searches covered in this talk

- τ b resonance (3rd gen. scalar leptoquark)
 - -Lepton-quark unification: bosons with both B and L
 - -7 TeV result
- Multi (>=3) lepton production (excited I/ν , H^{±±})
 - -Compositeness: excited states of fermions
 - -7 TeV and 8 TeV results
- di- τ resonance search (Z' $\rightarrow \tau \tau$, H $\rightarrow \tau \tau$)
 - Extension of gauge sectors: heavier states of Z/W
 - -7 TeV, 8 TeV and 13 TeV results
- τ and missing momentum (W' $\rightarrow \tau \nu$)
 - -13 TeV result

Searches NOT covered here

For SUSY searches, refer to F. Lyu's talk

• For di-Higgs and BSM Higgs searches, refer to talks by P. Bokan and C. Caputo

For LFV signatures, refer to B. Le's talk

• For H \rightarrow leptons (incl. $\tau \tau$), refer to L. Schildgen's

• And, B. Winter's talk on τ polarization in $Z \rightarrow \tau \tau$

3rd gen. scalar leptoquarks

JHEP06(2013)033 1303.0526

- LQ₃LQ₃→ τ b τ b (100% BR assumed)
- e τ had-visbb+3 ν and μ τ had-visbb+3 ν channels

Cross-section [pb]

• $m(LQ_3) > 534 \text{ GeV}$

 S_T : scalar sum of p_T of e/μ , τ , 2 jets and missing E_T

(b) Muon Channel

Generic multi-lepton search

JHEP08(2015)138 1411.2921

(7TeV: PRD87(2013)052002 1211.6312)

- $\geq 3e/\mu$, $2e/\mu + \geq 1 \tau_{had}$, on-Z and off-Z
- Model-independent σ_{vis} limit interpreted as $H^{\pm\pm} \rightarrow e^{\pm} \tau^{\pm}/\mu^{\pm} \tau^{\pm}$ and excited leptons
- $\tau^* \rightarrow \tau Z$, $\nu_{\tau}^* \rightarrow \tau W$, etc.
- For m(I*)= Λ , m(τ *)>2.5 TeV, m(ν *)>1.6 TeV

Λ: compositeness scale

(b) $2e/\mu + \geq 1\tau_{\text{had}}$, off-Z, no-OSSF

(f) $2e/\mu + \ge 1\tau_{\text{had}}$, on-Z

Di-τ resonance search

JHEP01(2018)055 1709.07242

(8TeV: <u>JHEP07(2015)157</u> <u>1502.07177</u>)

(7TeV: PLB719(2013)242 1210.6604)

- Analysis results for BSM H
 search (see C. Caputo's talk)
 interpreted for Z'→ τ τ limits
- T lep T had and T had T had Channels
 (b-veto and b-tag selections in H search were merged)
- m(Z'SSM) < 2.42 TeV excluded for Sequential Standard Model
- Results also interpreted in G(221) model (shown later)

τ+MET resonance search

PRL120(2018)161802 1801.06992

cf. CMS 8TeV: PLB755(2016)196

13TeV: 1807.11421

- First search on this channel by ATLAS
- τ had-vis with pT > 50 GeV, ET_miss > 150 GeV
- 0.7<pt/>pt/Et_miss <1.3, $\Delta \phi$ >2.4
- Main background (BG)
 from W→τν (from MC)
- Jet(→ τ had) BG from
 W/Z+jets, multi-jets
 (estimated data-driven)
- Other BG: W/Z/γ*,
 pair/single-top, diboson
 (from MC)

$\tau \nu$ resonance search: results

PRL120(2018)161802 1801.06992

cf. CMS 8TeV: PLB755(2016)196

13TeV: 1807.11421

ATLAS

 $m_{W'}$ [GeV] ₁₃

 $\pm 2\sigma$

- Model-independent $\sigma \times A \times \varepsilon$ limits with m_T thresholds (Acceptance etc. can be found in www.hepdata.net/record/80812)
- Sequential Standard Model: m(W'ssm) > 3.7 TeV

Non-universal G(221) model

- Also known as "topflavor"
- $SU(2)_{l}\times SU(2)_{h}\times U(1)$ split gauge groups for light(e/ μ) and heavy(τ) fermions
- ϕ : mixing of light/heavy
- τ coupling enhanced by
 cot φ NU w.r.t. W'ssm
- W'nu and Z'nu degenerate
- $\tau \, \nu$ channel gives enhanced sensitivity than $\tau \, \tau / \mu \, \mu / {\rm ee}$ for large parameter space

Conclusions

• Final states with τ leptons could be key signatures for Beyond-SM physics

- Search results shown for following topologies, bringing constraints on specific models:
 - τ b resonance (leptoquarks)
 - -3 or more leptons (excited leptons)
 - $-\tau + \tau$ resonance (Z'ssm and Z'NU)
 - $\tau \nu$ resonance (W'ssm and W'nu)
- Stay tuned for more 13 TeV results to come!

backup (1709.07242)

m_Ttot distributions in ττ selection channels

= invariant mass of $p_T(\tau_1)$, $p_T(\tau_2)$, $E_T(miss)$

G(221) constraints in Z'→ττ

