Tau 2018 Vondelkerk Amsterdam

Charged Lepton Flavour Violation

Adrian Signer

Paul Scherrer Institut / Universität Zürich

25 September 2018

you fail in QED course

- LFV in neutrino sector \rightarrow cLFV
- $\operatorname{BR}(\mu \rightarrow e \gamma) \sim \alpha\left(\frac{\Delta m^{2}}{m_{W}^{2}}\right)^{2} \sim 10^{-54}$
- there is nothing sacred about cLF
absence of cLFV: accident in SM, but not in BSM
it's not weird to have cLFV in BSM, it's weird not to have cLFV in BSM
- looking for BSM effects that are more difficult to avoid than to have in BSM, unless $\Lambda_{\mathrm{np}} \ggg M_{\text {ew }}$
- flavour is 'weak point' of SM \rightarrow keep probing there (B anomalies are perfect example)
- potential evidence is always indirect one experiment will never reveal nature of BSM
- different cLFV experiments ($\ell_{i} \rightarrow \ell_{j} \gamma, \ell_{i} \rightarrow \ell_{j} \ell_{k} \ell_{k}, \mu N \rightarrow e N, \tau \rightarrow \ell h \ldots$) should not be seen as competing, but as a part of a 'global' programme
- most experiments done at small scale m_{μ}, m_{τ}, m_{N} compare to and combine with high-energy searches $\left(Z \rightarrow \ell_{i} \ell_{j}, H \rightarrow \ell_{i} \ell_{j} \ldots\right)$
- need theory framework to compare to [Grzadkowski, Iskryynski, Misiak, Rosiek; Alonso, Jenkins, Manohar, Stoffer, Trott; Feruglio; Ciuchini, Franco, Reina, Silverstini; Pruna, Crivellin, Davidson, ...]
evolution of limits \rightarrow very rich experimental programme with substantial improvements expected in near future \rightarrow Ana Teixeira's talk

$$
\text { UV complete theory } \leftarrow \text { simplified model } \leftarrow \text { EFT }
$$

Example: doubly charged scalar

- as UV complete model: embed in multiplet, connection $m_{\nu} \ldots$ ++ valid $\forall p^{2}$, explains everything $\quad--$ requires divine inspiration
- as simplified model: $\mathcal{L}_{\text {int }}=\lambda_{f i}\left(\overline{l_{f}^{c}} l_{i}\right) S^{++} \ldots$ few couplings, 1 mass +- valid for $p^{2}>m_{S}^{2} \quad-+$ more or less general
- via effective theory: $\mathcal{L}_{\text {int }}=c_{f i j k}\left(\overline{l_{f}} \gamma^{\mu} l_{i}\right)\left(\overline{l_{j}} \gamma_{\mu} l_{k}\right) \ldots c$'s $\leftrightarrow \lambda^{\prime}$'s -- valid only for $p^{2} \ll m_{S}^{2} \quad++$ completely general

Processes take place at scale $\mu=m_{\text {mu/tau }}$ or $\mu=\mu_{N} \sim 1 \mathrm{GeV}$

$$
\mathcal{O}^{i}=\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\left(\bar{\psi}_{3} \Gamma^{a} \psi_{1}\right)\left(\bar{\psi}_{4} \Gamma^{b} \psi_{2}\right)
$$

$\mathcal{O}_{\text {eff }}^{1}=\left(\overline{e_{L}} \gamma^{\rho} \mu_{L}\right)\left(\overline{e_{R}} \gamma_{\rho} e_{R}\right)$
$\mathcal{O}_{\text {eff }}^{2}=\left(\overline{\nu_{e}} \gamma^{\rho} \nu_{\mu}\right)\left(\overline{e_{R}} \gamma_{\rho} e_{R}\right)$
$\mathcal{O}_{\text {smeft }}=\overline{\binom{\nu_{e}}{e_{L}}} \gamma^{\rho}\binom{\nu_{\mu}}{\mu_{L}}\left(\overline{e_{R}} \gamma_{\rho} e_{R}\right)$
$S U(3)_{\mathrm{QCD}} \times U(1)_{\mathrm{QED}}$
$S U(3)_{\mathrm{QCD}} \times S U(2) \times U(1)_{Y}$

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda_{\mathrm{np}}} c^{(5)} \mathcal{O}_{\mathrm{smeft}}^{(5)}+\frac{1}{\Lambda_{\mathrm{np}}^{2}} \sum_{i} c_{i}^{(6)} \mathcal{O}_{i \mathrm{smeft}}^{(6)}
$$

dim 4: $\mathrm{SM}=$ most general gauge and Lorentz invariant Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SM}} & =-\frac{1}{4} G^{\mu \nu} G_{\mu \nu}-\frac{1}{4} W^{\mu \nu} W_{\mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu}+\hat{\theta} G^{\mu \nu} \tilde{G}_{\mu \nu} \\
& +\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)-m_{H}^{2} \Phi^{\dagger} \Phi-\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2} \\
& +i(\bar{\ell} \not D \ell+\bar{e} \not D e+\ldots)-\left(Y_{e} \bar{\ell} e \Phi+\ldots+\text { h.c. }\right) \\
& + \text { nothing with } \nu_{R} \rightarrow \text { no cLFV }
\end{aligned}
$$

$\operatorname{dim} 5 / \Lambda_{\mathrm{np}}$ violates lepton number, but doesn't affect SM much
$\operatorname{dim} \sigma / \Lambda_{\mathrm{np}}^{2}$, either we have cLFV or a 'problem' $\left\{\begin{array}{l}\Lambda_{\mathrm{np}} \ggg \Lambda_{\mathrm{ew}} \\ \text { need an explanation }\end{array}\right.$

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QED}}+\mathcal{L}_{\mathrm{QCD}}+\sum_{i} \frac{c_{i}^{(5)}}{\Lambda_{\mathrm{ew}}} Q_{i}^{(5)}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda_{\mathrm{ew}}^{2}} Q_{i}^{(6)}+\ldots
$$

dipole			
$Q_{\text {er }}$	$e m_{[p r]}\left(\bar{l}_{p} \sigma^{\mu \nu} P_{L} l_{r}\right) F_{\mu \nu}+$ h.c.		
scalar/tensorial		vectorial	
Q_{S}	$\left(\bar{l}_{p} P_{L} l_{r}\right)\left(\bar{l}_{s} P_{L} l_{t}\right)+$ h.c.	$\begin{aligned} & Q_{V L L} \\ & Q_{V R L} \\ & Q_{V R R} \end{aligned}$	$\begin{aligned} & \left(\bar{l}_{p} \gamma^{\mu} P_{L} l_{r}\right)\left(\bar{l}_{s} \gamma_{\mu} P_{L} l_{t}\right) \\ & \left(\bar{l}_{p} \gamma^{\mu} P_{L} l_{r}\right)\left(\bar{l}_{s} \gamma_{\mu} P_{R} l_{t}\right) \\ & \left(\bar{l}_{p} \gamma^{\mu} P_{R} l_{r}\right)\left(\bar{l}_{s} \gamma_{\mu} P_{R} l_{t}\right) \end{aligned}$
$\begin{gathered} Q_{S l q(1)} \\ Q_{S l q(2)} \\ Q_{T l q} \end{gathered}$	$\begin{gathered} \left(\bar{l}_{p} P_{L} l_{r}\right)\left(\bar{q}_{s} P_{L} q_{t}\right)+\text { h.c. } \\ \left(\bar{l}_{p} P_{L} l_{r}\right)\left(\bar{q}_{s} P_{R} q_{t}\right)+\text { h.c. } \\ \left(\bar{l}_{p} \sigma^{\mu \nu} P_{L} l_{r}\right)\left(\bar{q}_{s} \sigma_{\mu \nu} P_{L} q_{t}\right)+\text { h.c. } \end{gathered}$	$Q_{V l q L L}$ $Q_{V l q L R}$ $Q_{V l q R L}$ $Q_{V l q R R}$	$\begin{aligned} & \left(\bar{l}_{p} \gamma^{\mu} P_{L} l_{r}\right)\left(\bar{q}_{s} \gamma_{\mu} P_{L} q_{t}\right) \\ & \left(\bar{l}_{p} \gamma^{\mu} P_{L} l_{r}\right)\left(\bar{q}_{s} \gamma_{\mu} P_{R} q_{t}\right) \\ & \left(\bar{l}_{p} \gamma^{\mu} P_{R} l_{r}\right)\left(\bar{q}_{s} \gamma_{\mu} P_{L} q_{t}\right) \\ & \left(\bar{l}_{p} \gamma^{\mu} P_{R} l_{r}\right)\left(\bar{q}_{s} \gamma_{\mu} P_{R} q_{t}\right) \end{aligned}$

if EFT, then properly i.e. include running and mixing
scale of cLFV experiments $m_{\mathrm{mu}} \leq \mu \leq m_{W} \rightarrow c_{i}\left(m_{\mathrm{mu}}\right)$ "useless"
high-energy behaviour might reveal properties of underlying theory

stable universe ?

evolve from to m_{mu} to m_{W} (to combine experiments) and from m_{W} to $\Lambda_{\mathrm{uv}} \gg m_{w}$ (to get information on BSM)
allow for $\mu \rightarrow e$ but otherwise flavour diagonal (i.e. no small ${ }^{2}$)
[Crivellin, Davidson, Pruna, AS:1702.03020]

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}= & \mathcal{L}_{\mathrm{QED}}+\mathcal{L}_{\mathrm{QCD}} \\
+\frac{1}{\Lambda^{2}} & {\left[C_{L}^{D} e m_{\mu}\left(\overline{e_{L}} \sigma^{\mu \nu} \mu_{L}\right) F_{\mu \nu}+\sum_{f=q, \ell}\left[C_{f f}^{S}{ }^{L L}\left(\overline{e_{R}} \mu_{L}\right)\left(\overline{f_{R}} f_{L}\right)\right.\right.} \\
& \left.+C_{f f}^{V}{ }^{L L}\left(\overline{e_{L}} \gamma^{\mu} \mu_{L}\right)\left(\overline{f_{L}} \gamma_{\mu} f_{L}\right)+C_{f f}^{V}{ }^{L R}\left(\overline{e_{L}} \gamma^{\mu} \mu_{L}\right)\left(\overline{f_{R}} \gamma_{\mu} f_{R}\right)\right] \\
+ & \sum_{h=q, \tau}\left[C_{h h}^{T}{ }^{L L}\left(\overline{e_{R}} \sigma_{\mu \nu} \mu_{L}\right)\left(\overline{h_{R}} \sigma^{\mu \nu} h_{L}\right)+C_{h h}^{S}{ }^{L R}\left(\overline{e_{R}} \mu_{L}\right)\left(\overline{h_{L}} h_{R}\right)\right] \\
& \left.+\alpha_{s} m_{\mu} G_{F}\left(\overline{e_{R}} \mu_{L}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu}+L \leftrightarrow R+\text { h.c. }\right]
\end{aligned}
$$

© tree level: test of $C_{L / R}^{D}\left(m_{\mu}\right) \equiv\left(C_{e \gamma}\right)^{21}$
dipole term only ??

$\operatorname{Br}(\mu \rightarrow e \gamma) \simeq \alpha_{e} m_{\mu}^{5}\left(\left|C_{L}^{D}\right|^{2}+\left|C_{R}^{D}\right|^{2}\right)$
$C_{L}^{D}\left(m_{\mathrm{mu}}\right) \leftarrow C_{\ell \ell}^{S L L}\left(m_{W}\right), C_{x x}^{V R L}\left(m_{W}\right) \ldots$
very sensitive to contact interactions

dipole part 'same' as $\mu \rightarrow e \gamma$ contact part @ $\mu=m_{\text {mu }}$ new

$$
\begin{aligned}
\operatorname{Br}(\mu \rightarrow 3 e) & \simeq \alpha_{e}^{2} m_{\mu}^{5}\left(\left|C_{L}^{D}\right|^{2}+\left|C_{R}^{D}\right|^{2}\right)\left(8 \log \left[\frac{m_{\mu}}{m_{e}}\right]-11\right) \\
& +m_{\mu}^{5}\left(\left|C_{e e}^{S L L}\right|^{2}+16\left|C_{e e}^{V L L}\right|^{2}+8\left|C_{e e}^{V L R}\right|^{2}+L \leftrightarrow R\right)
\end{aligned}
$$

μ conversion: $\mu^{-} N_{Z}^{A} \rightarrow e^{-} N_{Z}^{A}$ dipole part 'same' as $\mu \rightarrow e \gamma$ contact part completely new

$$
\operatorname{Br}(\mu N \rightarrow e N) \simeq m_{\mu}^{5}\left|e D_{N} C_{L}^{D}+\ldots C_{q q}^{S} \ldots C_{q q}^{V}\right|^{2}+L \leftrightarrow R
$$

- match at tree level, run at one loop
- include 'leading' two-loop effects mixing of vectors into dipole as for $b \rightarrow s \gamma$
- Wilson coefficients run and mix, we want $C_{i}\left(m_{W}\right)$
- operators mix under RGE: one loop

and

$$
\left(\overline{e_{L}} \gamma^{\mu} \mu_{L}\right)\left(\overline{q_{L}} \gamma_{\mu} q_{L}\right) \rightarrow\left(\overline{e_{L}} \gamma^{\mu} \mu_{L}\right)\left(\overline{e_{L}} \gamma_{\mu} e_{L}\right) \text { or } \quad\left(\overline{e_{L}} \sigma^{\mu \nu} \mu_{L}\right) F_{\mu \nu}
$$

'naive' two-at-a-time limits see Ann-Kathrin Perrevoort's poster

VS.

'naive' two-at-a-time limits see Ann-Kathrin Perrevoort's poster

VS.

Constraints from $\mu \rightarrow e \gamma$

- contact interactions
$C_{\mu e t t}^{1} \rightarrow C_{\mu e t t}^{3} \rightarrow$ dipole interaction $C_{e \gamma}$
- probing very high energy range!
- even indirect limits can be very constraining
[Pruna,AS: 1408:3565]
an example: $S U(2)$ singlet doubly charged scalar (DCS) S^{++}

$$
\begin{aligned}
\mathcal{L}_{\mathrm{UV}} & =\mathcal{L}_{\mathrm{SM}}+\left(D_{\mu} S^{++}\right)^{\dagger}\left(D^{\mu} S^{++}\right) \\
& +\left(\lambda_{a b}{\overline{\left(\ell_{R}\right)}}_{a}^{c}\left(\ell_{R}\right)_{b} S^{++}+\text {h.c. }\right) \\
& +\lambda_{2}\left(H^{\dagger} H\right)\left(S^{--} S^{++}\right)+\lambda_{4}\left(S^{--} S^{++}\right)^{2}+[\ldots]
\end{aligned}
$$

focus on 6 couplings $\lambda_{a b}$ and mass m_{S}

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QED}}+\mathcal{L}_{\mathrm{QCD}}+\frac{1}{m_{S}^{2}} \sum_{i} C_{i} Q_{i}
$$

$$
C_{e \gamma}^{p r}\left(m_{W}\right) \sim \sum_{w=1}^{3}\left(\lambda_{r w} \lambda_{p w}^{*}\right)
$$

$$
C_{V R R}^{p r s t}\left(m_{W}\right)=\frac{\lambda_{r t} \lambda_{p s}^{*}}{2}
$$

$\rightarrow\left\{Q_{e \gamma}, Q_{V R R}, Q_{V R L}, Q_{V l q R R}, Q_{V l q R L}\right\}\left(m_{\ell}\right) \subset \mathcal{L}_{\text {eff }}$
we will get muon conversion!
 $C_{q q}^{V}$
'global' analysis \rightarrow there is no best experiment, all are important low-energy (μ and $\tau, \bar{M}-M$) high-energy (LC. mainly via t-channel exchange $e^{+} e^{-} \rightarrow \ell_{i} \bar{\ell}_{j}$)

For illustrative purpose:
$\lambda_{a b}=\lambda\left(\begin{array}{ccc}+1 & \nu & \nu^{2} \\ \nu & 1 & \nu \\ \nu^{2} & \nu & 1\end{array}\right)$
$6 \rightarrow 2$ parameters
[Crivellin, Ghezzi, Panizzi, Pruna, AS]
'global' analysis \rightarrow there is no best experiment, all are important low-energy (μ and $\tau, \bar{M}-M$) high-energy (LC. mainly via t-channel exchange $e^{+} e^{-} \rightarrow \ell_{i} \bar{\ell}_{j}$)

For illustrative purpose:
$\lambda_{a b}=\lambda\left(\begin{array}{ccc}-1 & \nu & \nu^{2} \\ \nu & 1 & \nu \\ \nu^{2} & \nu & 1\end{array}\right)$
$6 \rightarrow 2$ parameters
[Crivellin, Ghezzi, Panizzi, Pruna, AS]
'global' analysis \rightarrow there is no best experiment, all are important low-energy (μ and $\tau, \bar{M}-M$) high-energy (LC. mainly via t-channel exchange $e^{+} e^{-} \rightarrow \ell_{i} \bar{\ell}_{j}$)

For illustrative purpose:
$\lambda_{a b}=\lambda\left(\begin{array}{ccc}\nu^{4} & \nu^{3} & \nu^{2} \\ \nu^{3} & \nu^{2} & \nu \\ \nu^{2} & \nu & 1\end{array}\right)$
$6 \rightarrow 2$ parameters
[Crivellin, Ghezzi, Panizzi, Pruna, AS]
'global' analysis \rightarrow there is no best experiment, all are important low-energy (μ and $\tau, \bar{M}-M$) high-energy (LC. mainly via t-channel exchange $e^{+} e^{-} \rightarrow \ell_{i} \bar{\ell}_{j}$)

For illustrative purpose:
$\lambda_{a b}=\lambda\left(\begin{array}{ccc}1 & \nu^{2} & \nu^{3} \\ \nu^{2} & \nu^{4} & \nu^{5} \\ \nu^{3} & \nu^{5} & \nu^{6}\end{array}\right)$
$6 \rightarrow 2$ parameters
[Crivellin, Ghezzi, Panizzi, Pruna, AS]

- cLFV is a window with a view deeply beyond EW scale
- huge experimental progress expected within $5-10$ years
- if cLFV is natural in BSM, why have we not seen it then? Is Λ_{np} just too large? or BSM still cLF conserving??
- EFT approach is ideal first step for investigating cLFV EFT \rightarrow simplified models \rightarrow the UV complete model need many experiments
- beware of common misconceptions
- EFT is a QFT !
- RGE is not a precision issue, but qualitatively new effects
- $\mu \rightarrow e \gamma$ is very sensitive to contact interactions !!
- one/two-at-a-time limits only for presentation

