Search for lepton flavour violation with the CMS detector

Jian Wang (University of Florida)
On behalf of the CMS Collaboration

15th International Workshop on Tau Lepton Physics
25 Sep 2018, Amsterdam
Introduction

- In SM no known global symmetry requires lepton flavour conservation
 - Neutrino oscillation observed
- Charged LFV is a probe of BSM
 - Directly addresses physics of flavour and generation
- cLFV in SM due to non-zero neutrino mass is practically zero ==> Observation = unambiguous evidence of new physics
- CMS is a general purpose detector designed for high p_T physics at LHC (proton-proton collisions)
- LFV searches at CMS experiment
 - Higgs decay: $H \rightarrow \mu \tau$ or $e \tau$
 - Heavy state: $X \rightarrow e \mu$
 - τ-lepton LFV decay (HL-LHC projection)
 - Leptoquarks (not in this talk)

Outline of this talk
LFV in Higgs decays

- Higgs measurements so far show consistency with SM, while a significant contribution from exotic decays is still possible. Many new physics models allow Higgs LFV decays (1209.1397)

- Higgs to eµ decay is strongly constrained from the µ->eγ search limit => Br(H->eµ) < O(10^{-8})

- Weaker limits on Br(H->e/µτ) < O(0.1) from searches for τ->e/µγ and µ/e g-2 measurements
 - Direct searches for H->eτ and H->µτ promising

- CMS Run-1: a small excess (2.4σ) w.r.t. SM-only was observed for H->µτ; the best-fit branching fraction was 0.84 ± 0.38%

- H->µτ (µτ_{e} or µτ_{h}) and H->eτ (eτ_{µ} or eτ_{h}) analyses updated with 2016 data (13 TeV, 36 fb^{-1}) JHEP01(2018)001, arxiv:1712.07173
Event selection

In signal, neutrinos (Missing ET) is close to aligned with the visible τ decay product.

- The main background is $Z \rightarrow \tau\tau$.
- The decay products have on average higher p_T than in $Z \rightarrow \tau\tau$ events (where part of the energy is lost by neutrinos in both τ decays), and in events with misidentified leptons (jet $\rightarrow e/\mu/\tau_h$ rate decreases with p_T).

Signal event:

- Prompt lepton
- Visible τ
- MET

$Z \rightarrow \tau\tau$ event:

- Visible τ
- Visible τ
- 35.9 fb$^{-1}$ (13 TeV)

![Histograms showing signal and background distributions for $Z \rightarrow \tau\tau$ events](image)
Background estimation

The backgrounds are estimated from MC samples, except for:

- **Jet\rightarrowτ$_h$ background** in the eτ$_h$/µτ$_h$ final states (mostly W+jets): observed events with anti-isolated τ$_h$ re-weighted with a misidentification rate depending on p_T, η, and τ$_h$ decay mode

- **QCD multijet** in the eµ final state: obtained from events with same-sign leptons (other MC processes subtracted from data), and re-weighted by a scale factor that accounts for same-sign/ opposite-sign differences

Validation in same-sign events
Signal extraction

- Events divided into 4 categories to target different productions modes:
 - 0 jet: Targets $gg\rightarrow H$ events
 - 1 jet: Targets $gg\rightarrow H$ events produced in association with a jet
 - 2 jets, low m_{jj}: Targets $gg\rightarrow H$ events with additional jets
 - 2 jets, high m_{jj}: Targets $qq\rightarrow H$ events

- BDT trained on the signal against a selection of background samples (reducible background for $e\tau H$ and $\mu\tau H$, $ttbar$ and/or $Z\rightarrow\tau\tau$ for $e\tau\mu$ and $\mu\tau\mu$)

- Cross-check using a cut-based approach with the collinear mass as observable \rightarrow compatible results but less sensitivity
Results of $H\to\mu\tau$ and $H\to\eta\tau$ searches

The most stringent to date

- No excess of data
- Best fit branching ratio: 0.00±0.12%
- $\text{Br}(H\to\mu\tau) < 0.25\%$ @ 95% CL

- Slight excess of data (1.6σ)
- Best fit branching ratio: 0.30±0.18%
- $\text{Br}(H\to\eta\tau) < 0.61\%$ @ 95% CL
LFV decay of heavy resonance X→eμ

2016 data (13 TeV, 36 fb⁻¹)
JHEP04(2018)074, arxiv:1802.01122

Event selections are designed to be inclusive and model independent, requiring one prompt isolated electron and one prompt isolated muon

Background estimation

• Major background: events with 2 real leptons (ttbar, WW, etc), modelled by MC
• Other background: events with at least 1 fake lepton (mostly electron), estimated using jet-to-lepton fake rate from data control sample
In the region $m(\mu\mu) > 1.5$ TeV

Data: 4 events observed;

Expectation 4.64 ± 1.28

No significant excess is observed w.r.t SM expectation.

Limits are set on the product of the signal cross section and the branching fraction of signal to $\mu\mu$, based on the $\mu\mu$ invariant mass distribution.
X→eµ model interpretation

τ sneutrino production in R-parity violating SUSY (narrow resonance)

Heavy Z' gauge bosons (width 3% of the mass)

Quantum black-hole production in extra-dimension models (broader signal)

In all these interpretations, results improve previous limits by ~ 1 TeV;

The most sensitive values at colliders so far
The present $\tau\to3\mu$ search limits:

- Belle: 2.1×10^{-8}
- LHCb: 4.6×10^{-8}

$\tau\to3\mu$ is used as a benchmark of CMS muon detector upgrade performance

Forward muon detectors will be enhanced. The new ME0 detector extends pseudo-rapidity from $\eta = 2.4$ to 2.8

The most forward muon in $\tau\to3\mu$ (muon $p>2.5$ GeV; generator-level)

The major source of τ at LHC is D,B meson decays
τ→3µ @ HL-LHC

The signal acceptance is doubled at reconstruction level with ME0 detector.

But of course, these “extended” muons have worse momentum resolution.
\(\tau \rightarrow 3\mu @ \text{HL-LHC} \)

MC simulation study
Projected to 3000 fb\(^{-1}\)
Adding ME0 detector gains 15% sensitivity

Category 1: Events without using ME0

- **CMS Phase-2 Simulation**
- 3000 fb\(^{-1}\), 14 TeV, 200 PU
- Event category 1
 - Signal \((B_{\tau \rightarrow 3\mu} = 2 \times 10^{-3})\)
 - Background
- \(\sigma_{\text{peak}} = 18\) MeV

Category 2: Events with at least one muon tagged by ME0

- **CMS Phase-2 Simulation**
- 3000 fb\(^{-1}\), 14 TeV, 200 PU
- Event category 2
 - Signal \((B_{\tau \rightarrow 3\mu} = 2 \times 10^{-3})\)
 - Background
- \(\sigma_{\text{peak}} = 31\) MeV

Note: ME0 reconstruction software was not yet optimised at the time of this study

Signal and background yields in [1.55, 2.00] GeV, assuming \(Br(\tau \rightarrow 3\mu) = 2 \times 10^{-8}\)

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of background events</td>
<td>(2.4 \times 10^6)</td>
</tr>
<tr>
<td>Number of signal events</td>
<td>4580</td>
</tr>
<tr>
<td>Trimuon mass resolution</td>
<td>18 MeV</td>
</tr>
<tr>
<td>(B(\tau \rightarrow 3\mu)) limit per event category</td>
<td>(4.3 \times 10^{-9})</td>
</tr>
<tr>
<td>(B(\tau \rightarrow 3\mu)) 90% C.L. limit</td>
<td>(3.7 \times 10^{-9})</td>
</tr>
</tbody>
</table>
Summary

• Search for LFV decays at the CMS experiment
 • $\text{Br}(H\rightarrow\mu\tau) < 0.25\%$; $\text{Br}(H\rightarrow e\tau) < 0.61\%$
 • Previous excess in $H\rightarrow\mu\tau$ not confirmed with new data
 • Heavy $X\rightarrow e\mu$, interpreted in various models
• More analyses using the full Run 2 (2015-2018) data to be released within one year
• CMS is also interested in LFV τ physics - stay tuned
BACK-UP
LFV Higgs

• Trigger
 • $\mu \tau$ channel: single isolated muon trigger
 • $e\tau_h$ channel: single isolated electron trigger
 • $e\tau_\mu$ channel: electron + muon trigger
Results of $H \rightarrow \mu\tau$ and $H \rightarrow e\tau$ searches
Table 1: Numbers of events for background processes, total background with its associated systematic uncertainties, and data, in four bins of \(e\mu\) invariant mass.

<table>
<thead>
<tr>
<th>Mass range (GeV)</th>
<th>(m_{e\mu} < 500)</th>
<th>(500 < m_{e\mu} < 1000)</th>
<th>(1000 < m_{e\mu} < 1500)</th>
<th>(m_{e\mu} > 1500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet(\rightarrow e) misidentification</td>
<td>3601</td>
<td>82.8</td>
<td>2.92</td>
<td>0.849</td>
</tr>
<tr>
<td>(W\gamma)</td>
<td>2462</td>
<td>56.2</td>
<td>2.76</td>
<td>0.562</td>
</tr>
<tr>
<td>Drell–Yan</td>
<td>2638</td>
<td>5.31</td>
<td>0.343</td>
<td>0.0145</td>
</tr>
<tr>
<td>Single (t)</td>
<td>9930</td>
<td>141</td>
<td>2.81</td>
<td>0.178</td>
</tr>
<tr>
<td>(WW, WZ, ZZ)</td>
<td>11126</td>
<td>239</td>
<td>13.0</td>
<td>2.03</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>96754</td>
<td>971</td>
<td>18.5</td>
<td>1.01</td>
</tr>
<tr>
<td>Total background</td>
<td>126513</td>
<td>1495</td>
<td>40.3</td>
<td>4.64</td>
</tr>
<tr>
<td>Systematic uncertainty</td>
<td>23495</td>
<td>420</td>
<td>13.5</td>
<td>1.28</td>
</tr>
<tr>
<td>Data</td>
<td>123150</td>
<td>1426</td>
<td>41</td>
<td>4</td>
</tr>
</tbody>
</table>
Tau production at HL-LHC (3000 fb⁻¹)

<table>
<thead>
<tr>
<th>Process</th>
<th># of taus</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp → cc, D→τν</td>
<td>3.6 × 10¹⁴</td>
<td>95% D⁺, 5% D⁻⁺</td>
</tr>
<tr>
<td>pp → bb, B→τ+... B→D(τν)+...</td>
<td>1.4 × 10¹⁴</td>
<td>44% B⁺, 45% B⁰, 11% B⁻</td>
</tr>
<tr>
<td></td>
<td>0.6 × 10¹⁴</td>
<td>98% D⁺, 2% D⁻⁺</td>
</tr>
<tr>
<td>NNLO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp → W → τν</td>
<td>6.0 × 10¹⁰</td>
<td></td>
</tr>
<tr>
<td>pp → Z → ττ</td>
<td>1.2 × 10¹⁰</td>
<td>60 < m_{ττ} < 120 GeV</td>
</tr>
</tbody>
</table>

LHC is a prolific source of tau leptons: \(\sim 6 \times 10^{14} \) at HL-LHC (3000 fb⁻¹)

- **Hadronic taus:** lots, but challenging (soft, forward, poor S/B)
- **W/Z taus:** \(~10^4\) fewer, but relatively easier
Higgs LFV

- Lepton Flavor Violating decays of the Higgs boson would be a clear indication of physics BSM.
- Experimental LHC results:
 - **ATLAS**: 8 TeV results for $H \rightarrow \mu\tau/e\tau$ [1604.07730, 1508.03372]
 - **CMS**: $H \rightarrow \mu\tau/e\tau$: updated with 2016 data (HIG-17-001) and no excess left, $H \rightarrow e\mu$ results only with 2012 data (HIG-14-040)
 - **LHCb**: $H \rightarrow \mu\tau$ result expected soon

| BR($H \rightarrow \tau\mu$) | $< 1.43\%$ | $< 0.25\%$
|---------------------------|-------------|
| BR($H \rightarrow \tau e$) | $< 1.04\%$ | $< 0.61\%$
| BR($H \rightarrow e\mu$) | $< 0.036\%$ |