Lepton-flavour violating meson decays at LHCb

15th International Workshop on Tau Lepton Physics 2018

Amsterdam, 24-28 September, 2018

Maarten van Veghel, on behalf of the LHCb Collaboration

Lepton-flavour violation in meson decays

Why interesting?

While interest in lepton-flavour violation has been there for a long time, there is renewed interest, especially in the heavy flavour sector

B anomalies

- As you already saw in e.g. Sean's talk (link), there are tensions seen with lepton universality
- Also tension in (related) $b \rightarrow s \ell^+ \ell^-$ processes like R_K [Phys. Rev. Lett. 113, 151601 (2014)] and R_{K^*} [JHEP 08 (2017) 055]

Lepton-flavour violation in meson decays

Lepton flavour violation linked to lepton universality¹

- For example leptoquark model could explain seen tensions
- ullet Opens up possibilities for lepton flavour violation (like $X o e^\pm\mu^\mp$)

$$B_s^0 \to K^{*0}\ell^+\ell^- \text{ (tensions)} \qquad B_s^0 \to \ell'^+\ell^- \text{ (like } B_{(s)}^0 \to e^\pm \mu^\mp \text{)}$$

$$\bar{b}_s^0 \left\{ \bar{b}_s - \bar{b}_$$

¹Glashow, Guadagnoli and Lane [Phys.Rev.Lett. 114 (2015) 091801]

The LHCb detector at the LHC

- Aim is to measure properties of b and c hadrons which are produced at **very high rates** with pp collisions at the LHC (27% of b and \overline{b} quarks within LHCb geometry)
- Good at triggering on displaced tracks (heavy flavour decays) and displaced muons in particular
- ECAL, Muon Stations and RICH give good PID performance

Performance

momentum resolution: $\Delta p / p = 0.5$ % at low momentum to 1.0% at 200 GeV/c see the detector performance paper for a plot) ECAL resolution (nominal): 1% + 10% / (E[GeV]) impact parameter resolution: $(15 + 29/pT[\text{GeV}]) \mu m$ invariant mass resolution: $(36 + 29/pT[\text{GeV}]) \mu m$ invariant mass resolution:

- ~22 MeV/c² for two-body B decays ~100 MeV/c² for Bs $\rightarrow \phi$ γ , dominated by photon contribution
- decay time resolution: \sim 45 fs for B_S \rightarrow J/ ψ ϕ and for B_S \rightarrow D_S n

percentage of working detector channels: ~99 % for all sub-detectors data taking efficiency:90 % (good for analyses: 99%)

trigger efficiencies: ~ 90 % for dimuon channels

~ 30 % for multi-body hadronic final states

track reconstruction efficiency: \sim 96 % for long tracks Particle ID efficiency:

Electron ID \sim 90 % for \sim 5 % e \rightarrow h mis-id probability Kaon ID \sim 95 % for \sim 5 % $\pi\rightarrow$ k mis-id probability Muon ID \sim 97 % for 1-3 % $\pi\rightarrow$ p mis-id probability

[Int. J. Mod. Phys. A30, 1530022 (2015)]

Lepton-flavour violation analyses at LHCb

- Discussed in this talk
 - $D^0
 ightarrow e^{\pm} \mu^{\mp}$ [Phys.Lett. B754 (2016) 167-175]
 - $m^0
 ightarrow e^\pm \mu^\mp$ and $B_s^0
 ightarrow e^\pm \mu^\mp$ [JHEP 1803 (2018) 078]
- Other published LFV decay analyses at LHCb
 - $\tau^+ \to \mu^+ \mu^- \mu^+$ [JHEP 02 (2015) 121]:
 - * $\mathcal{B}(\tau^+ \to \mu^+ \mu^- \mu^+) < 4.6 \times 10^{-8}$ at 90% C.L. with 2011 and 2012 data, about a factor 2 higher than best limit set by Belle [Phys.Lett. B687 (2010) 139-143].
- Will briefly discuss what to expect in the future!

$$D^0\!
ightarrow e^\pm \mu^\mp$$

Interest

- Strongly suppressed in Standard Model, accessible by neutrino oscillations
- Strong enhancements in certain SUSY models, **leptoquarks** and multiple-Higgs-doublet models. For branching fraction at level of $\mathcal{O}(10^{-6})$, $\mathcal{O}(10^{-8})$, $\mathcal{O}(10^{-9})$ respectively.

Previous limit set by Belle [Phys. Rev. D 81, 091102(R) (2010)]

$$\mathcal{B}(D^0\!
ightarrow e^\pm\mu^\mp) < 2.6 imes 10^{-7}$$
 at 90% C.L.

Goal

- ullet Search and determine / set limit of branching fraction: $\mathcal{B}(D^0\! o e^\pm\mu^\mp)$
- Performed on Run 1 dataset (2011/2012) corresponding to $3 \, \mathrm{fb}^{-1}$ of pp collisions at (7/8) TeV

Selection

- Use $D^{*+} \rightarrow D^0 \pi^+$ to selection D^0 's, giving extra background reduction, by fitting both invariant mass of D^0 and $D^{*+} D^0$
- Normalize to $D^0 \to K^-\pi^+$
- On top of cut-based selection, a Boosted Decision Tree (**BDT**) is used to divide the sample further, to increase sensitivity
- Trained on simulation for signal, data side-bands for background

Backgrounds

- Main background: $D^0 \to \pi^+\pi^-$
- Peaks underneath signal!
- MisID probability, in this case **very low** at $\epsilon(\pi^+\pi^- \rightarrow e^{\pm}\mu^{\mp}) = (1.8 \pm 0.4) \times 10^{-8}!$

Signal and $D^0 \rightarrow \pi^+\pi^ \begin{array}{c} 0.09 \\ 0.08 \\ 0.07 \\ 0.00$

- Mass fit (2D; both D^0 and $D^{*+} D^0$) in 3 bins of BDT output
- Top is signal like, middle is intermediate and bottom is background like

Phys.Lett. B754 (2016) 167-175

Search

- Fit results in yield for $D^0 o e^\pm \mu^\mp$ of -7 ± 15
- No significant signal seen, consequently, with normalization, a limit is set

Limit

New limit set with factor 20 improvement on previous best limit

$${\cal B}(D^0\! o e^\pm \mu^\mp) < 1.3 imes 10^{-8}$$
 at 90% C.L.

$$B^0\! o e^\pm\mu^\mp$$
 and $B^0_s\! o e^\pm\mu^\mp$

Interest

- Strongly suppressed in Standard Model, same as $D^0 \to e^{\pm} \mu^{\mp}$, accessible by neutrino oscillations
- As for $D^0 o e^\pm \mu^\mp$ also enhancements in certain SUSY models, **leptoquarks** and multiple-Higgs-doublet models, but with couplings to b, like in lepton-universality tensions

Previous limits set by LHCb

$${\cal B}(B^0
ightarrow e^\pm \mu^\mp) < 2.8 imes 10^{-9}$$
 at 90% C.L. ${\cal B}(B^0_s
ightarrow e^\pm \mu^\mp) < 1.1 imes 10^{-8}$ at 90% C.L.

Presenting improved analysis with full LHC Run 1 data

JHEP 1803 (2018) 078

Selection

- Normalize to both $B^+ \to J/\psi (\to \mu^+ \mu^-) K^+$ and $B^0 \to K^+ \pi^-$
- BDT is used, trained against combinatorial background
- Trained on simulation for signal, same-sign (wrong sign) data for background

Improvements

with respect to previous LHCb analysis

- Three times more data in total
- More triggers used, so higher efficiency
- Much improved and dedicated BDT is trained / used.

$B^0_{(s)} ightarrow e^{\pm} \mu^{\mp}$: backgrounds and BDT

JHEP 1803 (2018) 078

BDT

- Output flat for signal on simulation
- Does not contain PID information, therefore response determined on data with $B^0 \to K^+\pi^-$

Backgrounds

- Main (peaking) background is $B^0 \to K^+\pi^-$
- Particle identification selection reduces it to negligible amounts
- Efficiencies cross-checked, for example with $B^0 \to K^+\pi^-$ fit with only electron PID

recovered bremsstrahlung

 $B^0 \rightarrow \pi^- \mu^+ \nu$ $B^0 \rightarrow e^{\pm} \mu^{\mp}$

 $B^0 \rightarrow e^{\pm} \mu^{\mp}$

 $m_{e^2\mu^7}$ [MeV/ c^2] without

with

 $m_{e^{\pm}u^{\mp}}$ [MeV/c²]

Search

 No significant signal seen, consequently, with normalization, a limit is set

Limit

New limit set with factor 2 to 3 improvement on previous best limit

$${\cal B}(B^0 o e^\pm \mu^\mp) < 1.3 imes 10^{-9}$$
 at 90% C.L. ${\cal B}(B^0_s o e^\pm \mu^\mp) < 6.3 imes 10^{-9}$ at 90% C.L.

Prospects

More decay modes

• More analyses: e.g. $B^0_{(s)} \to \tau^\pm \mu^\mp$, $B^+ \to K^+ e^\pm \mu^\mp$, $B^0 \to K^{(0*)} \tau^\pm \mu^\mp$

More data

- So far, LFV analyses published with Run 1 dataset (2011/2012) corresponding to $3\,\mathrm{fb}^{-1}$ of pp collisions at (7/8) TeV
- Current LHC Run 2 is approaching $6fb^{-1}$ of pp collisions at $13 \, \mathrm{TeV}!$
- So much more data to analyse

Summary

- Searches for lepton-flavour violating meson decays at LHCb
- Renewed interest due to tensions in lepton universality
- Presented $D^0 o e^\pm \mu^\mp$, $B^0 o e^\pm \mu^\mp$ and $B^0_s o e^\pm \mu^\mp$ with (improved) best limits
- Helps constraining new physics, e.g. models with leptoquarks
- More results to come at LHCb in terms of lepton-flavour violating meson decays with new data (still coming in as we speak) and more channels!