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Neutrino mass in particle physics

● Nature of the neutrino: Majorana or 
Dirac particle, i.e. is the neutrino it's 
own anti-particle ?

● How to explain the many orders of 
magnitude difference between neutrino 
mass limits and masses of the charged 
fermions of the standard model
→ sea-saw type I and type II 

mechanisms

● Possible connection to the generation 
of the observed matter - antimatter 
asymmetry in  the universe 
→ leptogenesis
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KATRIN

Mainz / Troitsk

ν - oscillations

dark energy

dark matter

baryons

stars / gas

Neutrino mass in cosmology

● Neutrinos are (after γ's) the second most 
abundant particle species in the universe
 

● As part of the hot dark matter, neutrinos have 
a significant influence on structure formation

● For large Σm
ν 
values fine grained 

structures are washed out by the 
free streaming neutrinos

Ʃ Ʃ

Ʃ Ʃ
Chung­Pei Ma 1996
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β-decay: absolute ν-mass
model independent, kinematics
status: m

ν
 < 2.3 eV

potential: m
ν
 ≈ 0.2 eV

e.g.: KATRIN, Project-8, ECHO
HOLMES, NuMECS

0νββ-decay: eff. Majorana mass
model-dependent (CP-phases)
status: mββ < 0.31 eV

potential: mββ ≈ 20-50 meV

e.g.: GERDA, CUORE, EXO, SNO+, Majorana,
         Nemo 3, COBRA, KamLAND-Zen

cosmology: ν hot dark matter Ω
ν

model dependent, analysis of CMB and 
structure formation data
status:   Σm

ν
 < 0.23 eV

  (Planck Collaboration, A&A 594 (2016) A13)

possible signal:  Σm
ν
 = 0.11 ± 0.03eV

      (Emami et al., arXiv:1711.05210)

 

neutrino mass
measurements

mν m
ββ

Σm
i

Search for neutrino mass
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(modified by final state distribution, recoil corrections, 
radiative corrections, ...)

T-decay
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Kinematic determination of m(ν
e
)

 

Tritium
● E

0    
= 18.6 keV, T

1/2
 = 12.3 a

● S(E) = 1 (super-allowed)

Detector requirements:
 

● large solid angle or 
source=detector approach

● high energy resolution
● low background
● low dead time / no pile up
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Signature of sterile neutrinos 

Shape modification below E
0
 by active (m

a
2) and sterile (m

s
2) neutrinos:

additional kink in β-spectrum 
at E = E

0
 – m

s

light sterile ν, ms = 3 eV

d
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keV sterile ν, ms = 7 keV
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● adiabatic transport → μ = E⊥/ B = const.
 

● B drops by 2·104 from solenoid to analyzing plane → E  ⊥ → EII    
 

● only electrons with EII > eU
0
 can pass the retardation potential 

 

● Energy resolution ΔE = E ,max, start⊥  · B
min

 / B
max

 < 1 eV

MAC-E filter concept

Magnetic Adiabatic Collimation with Electrostatic Filter

A. Picard et al., NIM B 63 (1992)
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KATRIN experiment at KIT

Pre-SpectrometerGaseous T
2
 source Transport section   Spectrometer  Detector
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KATRIN experiment at KIT

Pre-SpectrometerGaseous T
2
 source Transport section   Spectrometer  Detector
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allow only few 
contributions with 
Δm

ν
2

 
≤  0.007 eV2

⇔   σ < 60 meV 

statistical uncertainty σ
stat

    ≈ 0.018 eV2

systematic uncertainty σ
sys,tot

 ≈ 0.017 eV2

 
→ sensitivity for upper limit: 0.2 eV/c2 (90% C.L.)

m(ν
e
) = 0.35 eV observable with 5σ

KATRIN sensitivity: 
5 year measurement 

(eff. 3 y of data)
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Windowless Gaseous Tritium Source

● beam tube Ø = 9 cm , L = 10 m
● guiding field 3.6 T
● temperature T = 30 K ± 30 mK,
● T

2
 flow rate 5·1019 molecules/s

(40 g of T
2
 / day)

● T
2
 purity 95% ± 0.1 %

● T
2
 inlet pressure 10-3 mbar ± 0.1 %

● column density 5·1017 T
2
/cm2

● luminosity 1.7·1011 Bq

WGTS at Tritium Laboratory Karlsruhe
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Main-Spectrometer

● 18.6 kV retardation voltage, σ < 60 meV
 

● 0.93 eV resolution
 

● pressure < 10-11 mbar
 

● Air coils for earth magnetic field compensation
 

● Double layer wire electrode for background
reduction and field shaping

σE = 50 meV
(single angular 

emittance)
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PINCH MAGNET

DETECTOR MAGNET

DETECTOR

SUPPORT STRUCTURE

VACUUM, CALIBRATION SYSTEM

ELECTRONICS

electro
ns →

Focal Plane Detector

Focal plane detection system
 
● segmented Si PIN diode:

90 mm Ø, 148 pixels, 50 nm dead layer
 

● energy resolution ≈ 1 keV
 

● pinch and detector magnets up to 6 T
 

● post acceleration (10kV)
 

● active veto shield

pre-amplifier wheel

segmented Si-PIN wafer

detector magnets at KIT
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Project milestones: first light 2016

Testing complete 70m long beamline 

with electrons:
- alignment 
- magn. stearing of pencil beam

and with ions: 
- ion removal

Technical inauguration 
of KATRIN, October 2016 
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2017: scientific campaign with 83mKr

Use of monoenergetic conversion electrons from 83mKr 
sources to investigate stability and MAC-E filter 
spectroscopic properties
● gaseous Kr: > 10 m long, full flux tube
● condensed Kr: sub-monolayer, spot-like

83mKr from 1GBq
83Rb source

gaseous Kr-source
in WGTS (T=100 K)

condensed 
Kr-source 
at CPS (T=25 K)

KATRIN collab., 
JINST 13 P04020 (2018)

CKrS line
stability with 
pre-plating
 

≈ 1meV/h

M2/3-32
repeated scans of L3-32 
line over a week:
required ± 60 meV
GKrS measured
 

→ excellent long term stability
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2018: First tritium campaign

Official KATRIN inauguration: first tritium campaign (engineering run)
 

Motivation:
● method: inject known gas mix from prepared cylinders (80% of nominal ρd,

~1% DT and ~99% D2 corresponds to <1% of nominal activity ≈ 500 Mbq)
● verify functionality of all system components and demonstrate 0.1% global stability
● study beta spectrum for systematic effects and test 

analysis strategies 
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Stability of experimental parameters

Source parameters are stable and 
within the specifications

Blue arrow: systematic uncertainty 
Red dashed line: ± 0.1 % stability 
required for neutrino mass taking

Source stability over 12h period

DT concentration measured by 
laser Raman spectroscopy

Schlösser et al., 
J. Mol. Spect. 1044 61 (2013)
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First tritium: model fits

Analysis of first tritium scan (200 eV):
● model gives very good understanding

of both rate and shape (even up to 2 keV!!)
● fit (E

0
, bckg., Amp.) results agree with 

expectations
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KATRIN physics programme

KATRIN physics channels:
● model-independent electron (anti-)neutrino mass: m(ν

e
), sensitivity 0.2 eV @ 90% CL

● search for sterile neutrinos in the eV to keV range
● constrain local relic-ν density, search for Lorentz violations, exotic currents, BSM physics ...

KATRIN m(ν
e
) sensitivity projected sensitivity to keV 

scale neutrinos

sensitivity to eV 
scale neutrinos

TRISTAN prototype

Formaggio & Barrett, 
PL B706 (2011) 68 

Riis & Hannestad, 
JCAP 02 (2011) 011

observed increased
spectrometer
background
can largely be 
mitigated by 
optimized measure-
ment procedure
→ 0.24 eV sensitivity
not the final word ...

G. Drexlin et al., 
Adv. High Energy Phys.
2013 (2013) 293986

A. Boyarsky et al., 
arXiv:1807.07938
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Summary

● Studies of β-decay kinematics offer a model-independent way to determine the 
neutrino mass, complementary to cosmology and 0νββ searches

● KATRIN will probe the neutrino mass range down to 0.2 eV

● By default, KATRIN is also sensitive to eV scale sterile neutrinos and, with a future 
detector upgrade, able to probe for keV sterile neutrinos

● First tritium measurements with reduced activity in June 2018

● Tritium data taking with full source strength beginning 2019

supported by
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Thank you for your attention !
LN2 baffle installed in main
spectrometer pump port
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1. Inelastic scattering of ß´s in the source (WGTS)
    - calibration measurements with e-gun necessary 
    - deconvolution of electron energy loss function

2. Fluctuations of WGTS column density (required < 0.1%)
    -  rear wall detector, Laser - Raman spectroscopy,
       T=30K stabilization, e-gun measurements

3. Transmission function
   - spatially resolved e-gun measurements  
 
4. WGTS charging due to decay ions (MC: φ < 20mV)
   - Injection of low energy (meV) electrons from the 
     rear end, diagnostic tools available
 
5. Final state distribution
   - reliable quantum chem. calculations

6. HV stability of retarding potential on 3ppm level required 
   - precise HV-Divider (PTB), monitor spectrometer, 
     calibration sources  

allow only few 
contributions with 
Δm

ν
2

 
≤  0.007 eV2

⇔   σ < 60 meV 

⇒ 3 ppm long term
     stability

fluctuations σ2 lead to a 
downward shift in m

ν
2

U
U

=
0.06
18575

≈3⋅10−6

m
2
=−22

Systematic effects and error budget
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statistical uncertainty σ
stat

    ≈ 0.018 eV2

systematic uncertainty σ
sys,tot

 ≈ 0.017 eV2

 
→ sensitivity for upper limit: 0.2 eV/c2 (90% C.L.)

m(ν
e
) = 0.35 eV observable with 5σ

KATRIN sensitivity: 
5 year measurement 

(eff. 3 y of data)

m
2
=−22
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KATRIN background studies
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Background from Rydberg atoms

τ = τ(212Pb)

H* Rydberg atoms: 

    - desorbed from walls due to 206Pb recoil ions
from 210Po decays

    - non-trapped electrons on meV-scale
    - bg-rate: ~0.5 cps

counter measures:

    - reduce H-atom surface coverage: 

      a) extended bake-out phase: done

      b) strong UV illumination source

Testing this hypothesis:
artifically contaminating 
the spectrometer with 
implanted short-living 
daughters of 220Rn

Mitigation strategies for higher (Rydberg) background rate:

use larger data range (E
0
-60 eV), an optimized magnetic field setting (lower energy

resolution, but smaller flux-tube volume) and a different measurement time distribution
 

       → 240 meV (without further background reduction)
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KATRIN background & sensitivity

TDR 2004
optimized for 
10 mcps

558 mcps
non-optimized

~240 meV

ΔE ~ 2.5 eV

M. Kleesiek

Problem: current background level much higher than design value
 

Mitigation strategy:
 

● optimized measurement
time distribution

● enlarged energy range of 
spectral analysis

● flux tube compression 
by increasing B

min

0.38 mT
0.50 mT
0.80 mT
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What about sterile neutrinos ?

U
e1

U
e2

U
e3

U
e sterile

U1
U2

U3
U  sterile

U1
U2

U3
U  sterile


e



 


1


2


3


sterile

=

● Reactor anomaly: ca. 6% deficit in observed neutrino flux measured close to 
nearly 20 nuclear power stations (Mention et al., Phys.Rev.D83:073006,2011)
 

→ could be a hint to the existence of so-called sterile neutrinos

● Sterile neutrinos: only interact gravitationally, produced by mixing with 
standard (active) neutrino species

● 3+1 scenario: consider only one large mass splitting between lower (L) and
upper (U) mass regime: Δm2

S
 ≈  m2

U 
- m2

L
 

→ best fit from combined data of reactor flux measurements, GALLEX and
    SAGE calibration data and MiniBooNE:
 

|Δm2
S
| > 1.5 eV2,   sin2(2θ

S
) = 0.14 ± 0.08

_ _
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Sterile neutrinos as warm dark matter

● ΛCDM (Cold Dark Matter with cosmological constant) models predict too 
much structure at galactic scales (too many satellite galaxies)

CDM  (100 GeV) non-thermal WDM (1keV)   thermal WDM (1keV)
(e.g. A. Kamada at Meudon Workshop 2011)
→ Warm Dark Matter (e.g. keV sterile neutrinos) could resolve this problem

● In KATRIN: look for a kink a few keV below the endpoint of the β - spectrum

● But: Systematic uncertainties due to
○ Electronic excitation of daughter molecules
○ Inelastic scattering of decay electrons in the source
→ careful investigation required to see if we have a chance for detection
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Monte Carlo framework KASSIOPEIA

● KATRIN requires precise numerical simulations of all experiment 
components to minimize systematic uncertainties
 

● many software packages have been written for the individual 
subsystems
→ need a coherent framework to unify these efforts
→ development of  a global simulation package: KASSIOPEIA
 

● tailored to the special needs of the KATRIN experiment:
- ultra high precision
- calculation of electromagnetic fields
- particle generation / tracking / scattering
- inclusion of a realistic geometrical model of the experiment
- compatibility with KATRIN database and DAQ
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precision HV dividers (with PTB)
error budget:  Δm2

U
 < 0.0075 eV2/c4 → σ

U
 < 60 mV  @ 18.6 kV

83mKr conversion electrons
natural standard via 17.8 keV 
conversion electrons from 83mKr 

monitor spectrometer

D. Venos, arXiv 0902.0291;  

M. Rasulbaev et al., 

Appl. Rad. Iso., 66 (2008) 1838

Spectrometer calibration and monitoring

T
2
 β-decay electrons

●
HV-supplies
● up to 35 kV
● 5 ppm/8h

T. Thümmler et al., 
New Jour. Phys. 

11, 103007 (2009)

83mKr conv. electrons

electron gun
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Pumping sections

Differential Pumping Section (DPS2-F)
● magnetic guiding field B = 5.6 T
● differential pumping using 2000 l/s TMPs 

→ tritium reduction factor: 1·105

● ion monitoring by FTICR
● ion manipulation by electrodes

Cryogenic Pumping Section (CPS)
● magnetic guiding field B = 5.6 T
● cryosorption of T

2
 on Ar frost at ≈ 3 K

→ tritium reduction factor 1·107 

● within 60 days: accumulation of 1 Ci
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Pre-Spectrometer

Testing ground for many systematical effects 
and background sources, e.g.:

● Removal of Penning traps
(special electrode shapes)

● Compensation of high 
frequency HV noise
(triode shunt circuit)

● Removal of trapped
particles
(dipole mode, HF
excitation)

● Removal of 
Radon induced 
background
(LN2 baffle)

● Remaining 
background ≈ 20 mHz

● Pre-filter with a fixed potential: E = 18.3 keV
 

● Transmission of high energy electrons only
 

→ reduction from 1010 to 103 e-/s
→ reduction of background due to scattering 
     in the main spectrometer
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Current knowlegde and open questions

What we know (from ν oscillations):
 

● Neutrino flavour eigenstates differ 
from their mass eigenstates

● Neutrinos oscillate, hence they 
must have mass

● Mixing angles and Δm2 values 
known (with varying accuracies)

What we don't know :
 

● Normal or inverted hierachy ?
● Dirac or Majorana particle ?
● CP violating phases in mixing 

matrix ?
● No information about absolute 

mass scale ! (only upper limits)
● Existence of sterile neutrinos ?

normal
hierachy

inverted
hierachy

absolute
scale ?
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