Recent Results from Reactor Antineutrino Experiments

Hyunkwan Seo Seoul National University

15th International Workshop on Tau Lepton Physics Vondelkerk, Amsterdam, Netherlands, September. 24-28, 2018

Daya Bay

Reactor θ_{13} Experiments

RENO at Yonggwang, Korea

Reactor Neutrino Oscillations

θ₁₃ Reactor Neutrino Detectors

- 1. Cylindrical structure (four layers)
- 2. Neutrino Target: liquid scintillator with 0.1 % Gd doping

RENO Experimental Set-up

Daya Bay

Double Chooz

Outline of recent results from reactor antineutrino experiments

• Precise measurements of $|\Delta m_{ee}^2|$ and θ_{13}

- RENO: 2200 days, Daya Bay: 1958 days n-Gd delayed signals
- Double Chooz : 818(far) / 258(near) days n-Gd/n-H/n-C delayed signals

Measurement of absolute reactor neutrino flux

■ Fuel-composition dependent reactor antineutrino yield

A model-independent reactor antineutrino spectrum

θ_{13} and $|\Delta m^2_{ee}|$ in RENO

RENO 2200 days submitted to PRL (arXiv:1806.00248)

θ_{13} & $|\Delta m^2_{ee}|$ in Daya Bay

Neutrino 2018

Daya Bay 1958 days

- $$\begin{split} sin^2 2\theta_{13} &= 0.0856 \pm 0.0029 \; (3.4 \; \%) \\ |\triangle m_{ee}^{-2}| &= 2.52 \pm 0.07 \; (\times 10^{-3} \; eV^2) \; \; (2.8 \; \%) \end{split}$$
- Statistical uncertainty contribute 60% for $sin^22\theta_{13}$ and 50% for $|\triangle m_{ee}{}^2|$

θ_{13} : Double Chooz

Neutrino 2018

Double Chooz : far 818 days + near 258 days

 $\sin^2 2\theta_{13} = 0.105 \pm 0.014 (13 \%)$

Comparison of θ_{13} and $|\Delta m^2_{ee}|$

Measurement of Absolute Reactor Neutrino Flux

	Data / Prediction (Huber + Mueller)	Flux weighted baseline at near	
RENO (2200 days)	0.937 ± 0.020 (exp.)	411 m	
Daya Bay (1230 days)	0.952 ± 0.014 (exp.)	573 m	

*Prediction is corrected for three flavor neutrino oscillation

Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos

Observation of an excess at 5 MeV

Clear excess at 5 MeV

prompt energy/MeV

Correlation of 5 MeV Excess with Reactor Power

Evolution of Fuel Isotope Fraction

For single reactor core

Weighted from 6 reactors at RENO

Effective fission fraction

$$F_{i}(t) = \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_{r}(t)f_{i,r}(t)}{L_{r}^{2}\bar{E}_{r}(t)} / \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_{r}(t)}{L_{r}^{2}\bar{E}_{r}(t)}$$

weighted by thermal power (W), survival probability(p), baseline (L) over multiple reactor cores

8 groups of IBD samples with different effective fission fraction

Weighted from 6 reactors at Daya Bay

Fuel Composition Dependent IBD Yield

IBD yield per fission $\overline{y}_f = \sum \overline{F_i} y_i$

where,

$$y_i = \int \sigma(E_\nu) \phi_i(E_\nu) dE_\nu$$

 $\phi(E_{\nu})$: energy spectrum $\overline{F_i}$: fission fraction of isotope i

- The best fit slopes reject identical reactor antineutrino spectra hypothesis by 6.6σ (RENO) and 10σ (Daya Bay)
- Difference between best fit and Huber-Mueller slopes : 1.3σ (RENO) and 2.6σ (Daya Bay)
- If particular isotope contribute more to the reactor anomaly, the best fit slope may be different from the model

Reactor Antineutrino Yield per ²³⁵U vs. ²³⁹Pu Fission

 Reevaluation of the 235U IBD yield may mostly solve the reactor antineutrino anomaly

Correlation of 5 MeV excess with ²³⁵U isotope fraction

submitted to PRL (arXiv:1806.00574)

 2.7σ indication of 5 MeV excess coming from ²³⁵U fuel isotope fission !!

$$\Delta \chi^2$$
 (constant – best fit) = 7.17 (2.7 σ)
p-value = 0.0074

Unfolded Reactor Antineutrino Spectrum

- Unfolding using singular value decomposition (SVD) method
- A model-independent spectrum is obtained with the following fission fraction

Average fission fraction

	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ PU
RENO	0.573	0.073	0.299	0.055
Daya Bay	0.561	0.076	0.307	0.056

Summary

- More precise θ₁₃ and |Δm²_{ee}| measurements
 θ₁₃→ Daya Bay: 3.4 %, RENO: 7.6 %, Double Chooz: 13 %
 |Δm²_{ee}|→ Daya Bay: 2.8 %, RENO: 5.2 %
- The 5 MeV excess is seen by all three experiments
 Strong correlation with reactor thermal power
- Measured absolute reactor neutrino flux (wrt Huber-Mueller) R_{data/pred}: 0.952±0.014 (Daya Bay), 0.937±0.020 (RENO)
- Observation of fuel composition dependent IBD yield

Rejection of identical reactor antineutrino spectra : 6.6σ (RENO), 10σ (Daya Bay)

Reevaluation of the 235U IBD yield may mostly solve the reactor antineutrino anomaly

First hint for correlation between 5 MeV excess and ²³⁵U fission fraction (RENO)

A model-independent spectrum is obtained

Thanks for your attention!