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There is a tension of 3.7σ for the muon aµ = (gµ − 2)/2:

aEXP
µ − aSM

µ = 27.4 (2.7)︸︷︷︸
HVP

(2.6)︸︷︷︸
HLbL

(0.1)︸︷︷︸
other

(6.3)︸︷︷︸
EXP

×10−10

HVP
this talk

HLbL
Harvey’s talk

2019: δaEXP
µ → 4.5× 10−10 (avg. of BNL/estimate of 2019 Fermilab result)

Targeted final uncertainty of Fermilab E989: δaEXP
µ → 1.6× 10−10

⇒ by 2019 consolidate HVP/HLbL, over the next years uncertainties to O(1× 10−10)
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Status of HVP determinations

No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

ETMC 2018
Mainz 2018 (prelim)
RBC/UKQCD 2018

BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013

610 630 650 670 690 710 730 750
aµ × 1010

Green: LQCD, Orange: LQCD+Dispersive, Purple: Dispersive
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Dispersive method - Overview

e+

e−

γ e+e− → hadrons(γ)

Jµ = V I=1,I3=0
µ + V I=0,I3=0

µ

τ → νhadrons(γ)

Jµ = V I=1,I3=±1
µ − AI=1,I3=±1

µ

ν

τ W

Knowledge of isospin-breaking corrections and separation of vector and axial-vector
components needed to use τ decay data. (Poster by M. Bruno)

Can have both energy-scan and ISR setup.
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Dispersive method - e+e− status

Recent results by Keshavarzi et al. 2018, Davier et al. 2017:

Channel This work (KNT18) DHMZ17 [78] Di↵erence
Data based channels (

p
s  1.8 GeV)

⇡0� (data + ChPT) 4.58 ± 0.10 4.29 ± 0.10 0.29
⇡+⇡� (data + ChPT) 503.74 ± 1.96 507.14 ± 2.58 �3.40
⇡+⇡�⇡0 (data + ChPT) 47.70 ± 0.89 46.20 ± 1.45 1.50
⇡+⇡�⇡+⇡� 13.99 ± 0.19 13.68 ± 0.31 0.31
⇡+⇡�⇡0⇡0 18.15 ± 0.74 18.03 ± 0.54 0.12
(2⇡+2⇡�⇡0)no ⌘ 0.79 ± 0.08 0.69 ± 0.08 0.10
3⇡+3⇡� 0.10 ± 0.01 0.11 ± 0.01 �0.01
(2⇡+2⇡�2⇡0)no ⌘! 0.77 ± 0.11 0.72 ± 0.17 0.05
K+K� 23.00 ± 0.22 22.81 ± 0.41 0.19
K0

SK0
L 13.04 ± 0.19 12.82 ± 0.24 0.22

KK⇡ 2.44 ± 0.11 2.45 ± 0.15 �0.01
KK2⇡ 0.86 ± 0.05 0.85 ± 0.05 0.01
⌘� (data + ChPT) 0.70 ± 0.02 0.65 ± 0.02 0.05
⌘⇡+⇡� 1.18 ± 0.05 1.18 ± 0.07 0.00
(⌘⇡+⇡�⇡0)no ! 0.48 ± 0.12 0.39 ± 0.12 0.09
⌘2⇡+2⇡� 0.03 ± 0.01 0.03 ± 0.01 0.00
⌘! 0.29 ± 0.02 0.32 ± 0.03 �0.03
!(! ⇡0�)⇡0 0.87 ± 0.02 0.94 ± 0.03 �0.07
⌘� 0.33 ± 0.03 0.36 ± 0.03 �0.03
�! unaccounted 0.04 ± 0.04 0.05 ± 0.00 �0.01
⌘!⇡0 0.10 ± 0.05 0.06 ± 0.04 0.04
⌘(! npp)KK̄no �!KK̄ 0.00 ± 0.01 0.01 ± 0.01 � 0.01*

Estimated contributions (
p

s  1.8 GeV)
(⇡+⇡�3⇡0)no ⌘ 0.40 ± 0.04 0.35 ± 0.04 0.05
(⇡+⇡�4⇡0)no ⌘ 0.12 ± 0.12 0.11 ± 0.11 0.01
KK3⇡ � 0.02 ± 0.01 � 0.03 ± 0.02 0.01
!(! npp)2⇡ 0.08 ± 0.01 0.08 ± 0.01 0.00
!(! npp)3⇡ 0.10 ± 0.02 0.36 ± 0.01 �0.26
!(! npp)KK 0.00 ± 0.00 0.01 ± 0.00 �0.01
⌘⇡+⇡�2⇡0 0.03 ± 0.01 0.03 ± 0.01 0.00

Other contributions
J/ 6.26 ± 0.19 6.28 ± 0.07 �0.02
 0 1.58 ± 0.04 1.57 ± 0.03 0.01
⌥(1S � 4S) 0.09 ± 0.00 - 0.09**

Contributions by energy region
1.8  p

s  3.7 GeV 34.54 ± 0.56 (data) 33.45 ± 0.65 (pQCD)*** 1.09
3.7  p

s  5.0 GeV 7.33 ± 0.11 (data) 7.29 ± 0.03 (data) 0.04
5.0  p

s  9.3 GeV 6.62 ± 0.10 (data) 6.86 ± 0.04 (pQCD) �0.24
9.3  p

s  12.0 GeV 1.12 ± 0.01 (data+pQCD) 1.21 ± 0.01 (pQCD) �0.09
12.0  p

s  40.0 GeV 1.64 ± 0.00 (pQCD) 1.64 ± 0.00 (pQCD) 0.00
> 40.0 GeV 0.16 ± 0.00 (pQCD) 0.16 ± 0.00 (pQCD) 0.00

Total 693.3 ± 2.5 693.1 ± 3.4 0.2

*DHMZ have not removed the decay of ⌘ to pionic states which incurs a double counting of this
contribution with the KKn⇡ channels.

**DHMZ include the contributions from the ⌥ resonances in the energy region 9.3  p
s  12.0 GeV.

***DHMZ have inflated errors to account for di↵erences between data and pQCD.

Table 5: Comparison of the contributions to ahad, LO VP
µ calculated by DHMZ17 and in this work

(KNT18), where all results are given in units ahad, LO VP
µ ⇥ 1010. The first column indicates the

final state or individual contribution, the second column gives the KNT18 estimate, the third
column states the DHMZ17 estimate and the last column gives the di↵erence between the two
evaluations. For the final states in this work that have low energy contributions estimated from
chiral perturbation theory (see [7]), the contributions from these regions have been added to the
contributions from the respective data.
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Table 5: Comparison of the contributions to ahad, LO VP
µ calculated by DHMZ17 and in this work

(KNT18), where all results are given in units ahad, LO VP
µ ⇥ 1010. The first column indicates the

final state or individual contribution, the second column gives the KNT18 estimate, the third
column states the DHMZ17 estimate and the last column gives the di↵erence between the two
evaluations. For the final states in this work that have low energy contributions estimated from
chiral perturbation theory (see [7]), the contributions from these regions have been added to the
contributions from the respective data.

33

Good agreement for total, individual channels disagree to some degree.
Muon g-2 Theory Initiative workshops recently held at Fermilab,
KEK, UConn, and Mainz, intend to facilitate discussions and further
understanding of these tensions.

One difference: treatment of correlations, impactful in particular in case
when not all experimental data agrees
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Dispersive method - e+e− status

Tension in 2π experimental input. BaBar and KLOE central values differ by
δaµ = 9.8(3.5)× 10−10, compare to quoted total uncertainties of dispersive results of
order δaµ = 3× 10−10.

 360  365  370  375  380  385  390  395

aµ
π+π−

 (0.6 ≤ �√s ≤ 0.9 GeV) x 1010

Fit of all π+π− data: 369.41 ± 1.32

Direct scan only: 370.77 ± 2.61

KLOE combination: 366.88 ± 2.15

BaBar (09): 376.71 ± 2.72

BESIII (15): 368.15 ± 4.22

Figure 4: The comparison of the integration of the individual radiative return measurements and the
combination of direct scan ⇡+⇡� measurements between 0.6  p

s  0.9 GeV.
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Figure 5: Contributing data in the ⇢ resonance region of the ⇡+⇡� channel plotted against the new fit
of all data (left panel), with an enlargement of the ⇢� ! interference region (right panel).

error instead of a global one is clearly visible. Tensions arise in particular in the ⇢ resonance
region, where the cross section is large.

The full combination of all ⇡+⇡� data is found to give

a⇡
+⇡�

µ [0.305  p
s  1.937 GeV] = 502.97 ± 1.14 ± 1.59 ± 0.06 ± 0.14

= 502.97 ± 1.97 (3.3)

and
�↵⇡+⇡�(M2

Z)[0.305  p
s  1.937 GeV] = 34.26 ± 0.12 . (3.4)
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Conflicting input limits the precision and reliability of the dispersive results.

Looking for more data and insight: energy-scans update from CMD-3 in Novosibirsk
and ISR updates from KLOE2, BaBar, Belle, BESIII and BelleII.
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Dispersive method - τ status
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Fig. 7. Fit of the pion form factor from 4m2
⇡ to 0.3 GeV2 using a third order expansion with the constraint

F (0) = 1 and using the measured pion charge radius-squared from space-like data. The result of the fit is
integrated only up to 0.13 GeV2. This figure supersedes the corresponding plot in Fig. 4 of [9].

ahad,LO
µ [⇡⇡, ⌧ ] (10�10)

Experiment
2m⇡± � 0.36 GeV 0.36 � 1.8 GeV

ALEPH 9.80 ± 0.40 ± 0.05 ± 0.07 501.2 ± 4.5 ± 2.7 ± 1.9
CLEO 9.65 ± 0.42 ± 0.17 ± 0.07 504.5 ± 5.4 ± 8.8 ± 1.9
OPAL 11.31 ± 0.76 ± 0.15 ± 0.07 515.6 ± 9.9 ± 6.9 ± 1.9
Belle 9.74 ± 0.28 ± 0.15 ± 0.07 503.9 ± 1.9 ± 7.8 ± 1.9

Combined 9.82 ± 0.13 ± 0.04 ± 0.07 506.4 ± 1.9 ± 2.2 ± 1.9

Table 6. The isospin-breaking-corrected ahad,LO
µ [⇡⇡, ⌧ ] (in units of 10�10) from the measured mass spectrum by

ALEPH, CLEO, OPAL and Belle, and the combined spectrum using the corresponding branching fraction values.
The results are shown separately in two di↵erent energy ranges. The first errors are due to the shapes of the mass
spectra, which also include very small contributions from the ⌧ -mass and |Vud| uncertainties. The second errors
originate from B⇡⇡0 and Be, and the third errors are due to the isospin-breaking corrections, which are partially
anti-correlated between the two energy ranges. The last row gives the evaluations using the combined spectra.
This table supersedes the corresponding results shown in Table 2 of [9].

8 Conclusions

The ALEPH non-strange spectral functions from hadronic ⌧ decays have been updated using a new
method to unfold the measured mass spectra from detector e↵ects. The new method provides a more
accurate unfolding and corrects a problem in the correlation matrix of the published spectral functions [3].
The updated spectral functions have been used to repeat the analyses of [3]: a phenomenological fit to
the ⇡⇡0 mass spectrum, a QCD analysis using the vector, axial-vector, and total non-strange spectral
functions, and the computation of the hadronic contribution to the anomalous magnetic moment of the
muon. The results obtained, although similar in most cases, supersede those reported in Ref. [3].

We thank the former ALEPH Collaboration for providing the original data used in this re-analysis.
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Davier et al. 2013: ahad,LO
µ [ππ, τ ] = 516.2(3.5)× 10−10 (2m±

π – 1.8 GeV)

Compare to e+e−:

I ahad,LO
µ [ππ, e+e−] = 507.1(2.6)× 10−10 (DHMZ17, 2m±

π – 1.8 GeV)

I ahad,LO
µ [ππ, e+e−] = 503.7(2.0)× 10−10 (KNT18, 2m±

π – 1.937 GeV)

Here treatment of isospin-breaking to relate matrix elements of V I=1,I3=1
µ to V I=1,I3=0

µ

crucial. Progress towards a first-principles calculation from LQCD+QED, see poster
by M. Bruno.
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Lattice QCD – Time-Moment Representation

Starting from the vector current Jµ(x) = i
∑

f Qf Ψf (x)γµΨf (x) we may
write

aHVP LO
µ =

∞∑

t=0

wtC (t)

with

C (t) =
1

3

∑

~x

∑

j=0,1,2

〈Jj(~x , t)Jj(0)〉

and wt capturing the photon and muon part of the HVP diagrams
(Bernecker-Meyer 2011).

The correlator C (t) is computed in lattice QCD+QED at physical pion
mass with non-degenerate up and down quark masses including up,
down, strange, and charm quark contributions. The missing bottom
quark contributions are computed in pQCD.
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Diagrams – Isospin limit

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-

x

x

x

(a) M

x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

The quark-disconnected contribution is now calculated at physical pion
mass by RBC/UKQCD 2015 and BMW 2017 and progress has been
shown by the Mainz group at lattice 2018.
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Diagrams – QED corrections

and fit d!.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d! and E! and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E! and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d

(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections

x

x

x

(a) M

x

x

x

(b) R

x

(c) Rd

x

x

x

(d) O

Figure 2: SIB corrections

4

For diagram F we enforce exchange of gluons between the quark loops as otherwise a
cut through a single photon line would be possible. This single-photon contribution is
counted as part of the HVP NLO and not included for the HVP LO.

BMW 2017 included phenomenological estimates of these diagrams, RBC/UKQCD
2018 V, S, and F (dominant diagrams in SU(3) and 1/Nc ) at physical pion mass, work
in progress by ETMC on V and S presented at lattice 2018; RBC/UKQCD 2018
update will include values or bounds for all diagrams.
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Figure 2: SIB corrections

4

For the HVP R is negligible since ∆mu ≈ −∆md and O is SU(3) and 1/Nc suppressed.

M computed by HPQCD/MILC 2017, RBC/UKQCD 2018, and preliminary results
shown at lattice 2018 for ETMC. BMW 2017 estimated M phenomenologically.
RBC/UKQCD 2018 update will include O as well.
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Regions of precision (R-ratio data here is from Fred Jegerlehner 2017)

3
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FIG. 4. Comparison of wtC(t) obtained using R-ratio data
[1] and lattice data on our 64I ensemble.

lation presented here, we only include diagram M. For
the meson masses this corresponds to neglecting the sea
quark mass correction, which we have previously [17] de-
termined to be an O(2%) and O(14%) e↵ect for the pi-
ons and kaons, respectively. This estimate is based on
the analytic fits of (H7) and (H9) of Ref. [17] with ratios
C

m⇡, K

2 /C
m⇡, K

1 given in Tab. XVII of the same reference.
For the hadronic vacuum polarization the contribution of
diagram R is negligible since �mup ⇡ ��mdown and di-
agram O is SU(3) and 1/Nc suppressed. We therefore
assign a corresponding 10% uncertainty to the SIB cor-
rection.

We also compute the O(↵) correction to the vector
current renormalization factor ZV used in C(0) [17, 18]
and find a small correction of approximately 0.05% for
the light quarks.

We perform the calculation of C(0) on the 48I and 64I
ensembles described in Ref. [17] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [22]. The quark-disconnected
contribution as well as QED and SIB corrections are com-
puted only on ensemble 48I.

For the noisy light quark connected contribution, we
employ a multi-step approximation scheme with low-
mode averaging [23] over the entire volume and two levels
of approximations in a truncated deflated solver (AMA)
[24–27] of randomly positioned point sources. The low-
mode space is generated using a new Lanczos method
working on multiple grids [28]. Our improved statisti-
cal estimator for the quark disconnected diagrams is de-
scribed in Ref. [29] and our strategy for the strange quark
is published in Ref. [30]. For diagram F, we re-use point-
source propagators generated in Ref. [31].

The correlator C(t) is related to the R-ratio data
[11] by C(t) = 1

12⇡2

R1
0

d(
p

s)R(s)se�
p

st with R(s) =
3s

4⇡↵2�(s, e+e� ! had). In Fig. 4 we compare a lattice
and R-ratio evaluation of wtC(t) and note that the R-
ratio data is most precise at very short and long dis-
tances, while the lattice data is most precise at interme-
diate distances. We are therefore led to also investigate
a position-space “window method” [11, 32] and write

aµ = aSD
µ + aW

µ + aLD
µ (6)

with aSD
µ =

P
t C(t)wt[1 � ⇥(t, t0,�)], aW

µ =P
t C(t)wt[⇥(t, t0,�) � ⇥(t, t1,�)], and aLD

µ =P
t C(t)wt⇥(t, t1,�), where each contribution is

accessible from both lattice and R-ratio data. We define
⇥(t, t0,�) = [1 + tanh [(t � t0)/�]] /2 which we find to
be helpful to control the e↵ect of discretization errors
by the smearing parameter �. We then take aSD

µ and

aLD
µ from the R-ratio data and aW

µ from the lattice.
In this work we use � = 0.15 fm, which we find to
provide a su�ciently sharp transition without increasing
discretization errors noticeably. This method takes the
most precise regions of both datasets and therefore may
be a promising alternative to the proposal of Ref. [33].

ANALYSIS AND RESULTS

In Tab. I we show our results for the individual as well
as summed contributions to aµ for the window method
as well as a pure lattice determination. We quote sta-
tistical uncertainties for the lattice data (S) and the R-
ratio data (RST) separately. For the quark-connected
up, down, and strange contributions, the computation is
performed on two ensembles with inverse lattice spacing
a�1 = 1.730(4) GeV (48I) as well as a�1 = 2.359(7) GeV
(64I) and a continuum limit is taken. The discretization
error (C) is estimated by taking the maximum of the
squared measured O(a2) correction as well as a simple
(a⇤)4 estimate, where we take ⇤ = 400 MeV. We find
the results on the 48I ensemble to di↵er only a few per-
cent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution additional ensembles described in Ref. [22]
are used and the maximum of the above and a (amc)

4

estimate is taken as discretization error. The remain-
ing contributions are small and only computed on the
48I ensemble for which we take (a⇤)2 as estimate of dis-
cretization errors.

For the up and down quark-connected and discon-
nected contributions, we correct finite-volume e↵ects to
leading order in finite-volume position-space chiral per-
turbation theory [34]. Note that in our previous pub-
lication of the quark-disconnected contribution [29], we
added this finite-volume correction as an uncertainty but
did not shift the central value. We take the largest ratio
of p6 to p4 corrections of Tab. 1 of Ref. [35] as systematic
error estimate of neglected finite-volume errors (V). For
the SIB correction we also include the sizeable di↵erence
of the corresponding finite and infinite-volume chiral per-
turbation theory calculation as finite-volume uncertainty.
For the QED correction, we repeat the computation us-
ing an infinite-volume photon (QED1 [36]) and include
the di↵erence to the QEDL result as a finite-volume er-
ror. Further details of the QED1 procedure are provided
as supplementary material.

The precision of lattice data deteriorates exponentially as we go to large t, however, is precise at intermediate
distances. The R-ratio is very precise at long distances.

Note: in this plot a direct comparison of R-ratio and lattice data is not appropriate. Continuum limit,
infinite-volume corrections, charm contributions, and IB corrections are missing from lattice data shown here.
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Window method (implemented in RBC/UKQCD 2018)

We therefore also consider a window method. Following Meyer-Bernecker
2011 and smearing over t to define the continuum limit we write

aµ = aSD
µ + aW

µ + aLD
µ

with

aSD
µ =

∑

t

C (t)wt [1−Θ(t, t0,∆)] ,

aW
µ =

∑

t

C (t)wt [Θ(t, t0,∆)−Θ(t, t1,∆)] ,

aLD
µ =

∑

t

C (t)wtΘ(t, t1,∆) ,

Θ(t, t ′,∆) = [1 + tanh [(t − t ′)/∆]] /2 .

In this version of the calculation, we use
C (t) = 1

12π2

∫∞
0

d(
√
s)R(s)se−

√
st with R(s) = 3s

4πα2σ(s, e+e− → had)
to compute aSD

µ and aLD
µ .
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How does this translate to the time-like region?

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

In this section we expand on a selection of technical de-
tails and add results to facilitate cross-checks of di↵erent
calculations of aHVP LO

µ .

Continuum limit: The continuum limit of a selec-
tion of light-quark window contributions aW

µ is shown in
Fig. 8. We note that the results on the coarse lattice di↵er
from the continuum limit only at the level of a few per-
cent. We attribute this mild continuum limit to the fa-
vorable properties of the domain-wall discretization used
in this work. This is in contrast to a rather steep contin-
uum extrapolation that occurs using staggered quarks as
seen, e.g., in Ref. [42].

The mild continuum limit for light quark contribu-
tions is consistent with a naive power-counting estimate
of (a⇤)2 = 0.05 with ⇤ = 400 MeV and suggests that
remaining discretization errors may be small. Since we
find such a mild behavior not just for a single quantity
but for all studied values of aW

µ with t0 ranging from 0.3
fm to 0.5 fm and t1 ranging from 0.3 fm to 2.6 fm, we
suggest that it is rather unlikely that the mild behav-
ior is result of an accidental cancellation of higher-order
terms in an expansion in a2. This lends support to our
quoted discretization error based on an O(a4) estimate.
In future work, this will be subject to further scrutiny by
adding a data-point at an additional lattice spacing.

Energy re-weighting: The top panel of Fig. 9 shows
the weighted correlator wtC(t) for the full aµ as well as
short-distance and long-distance projections aSD

µ and aLD
µ

for t0 = 0.4 fm and t1 = 1.5 fm. The bottom panel of
Fig. 9 shows the corresponding contributions to aµ sep-
arated by energy scale

p
s. We notice that, as expected,

aSD
µ has reduced contributions from low-energy scales and

aLD
µ has reduced contributions from high-energy scales.

In the limit of projection to su�ciently long distances, we
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FIG. 8. Continuum limit of light-quark aW
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(top) and the e↵ect of the window in terms of re-weighting
energy regions (bottom).

may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.
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may attempt to contrast the R-ratio data directly with
an exclusive study of the low-lying ⇡⇡ states in the lattice
calculation. This is left to future work.

Statistics of light-quark contribution: We use an
improved statistical estimator including a full low-mode
average for the light-quark connected contribution in the
isospin symmetric limit as discussed in the main text.
For this estimator, we find that we are able to saturate
the statistical fluctuations to the gauge noise for 50 point
sources per configuration. For the 48I ensemble we mea-
sure on 127 gauge configurations and for the 64I ensem-
ble we measure on 160 gauge configurations. Our result
is therefore obtained from a total of approximately 14k
domain-wall fermion propagator calculations.

Results for other values of t0 and t1: In Tabs. S I-
S VII we provide results for di↵erent choices of window
parameters t0 and t1. We believe that this additional
data may facilitate cross-checks between di↵erent lattice
collaborations in particular also with regard to the up
and down quark connected contribution in the isospin
limit.

Most of ππ peak is captured by window from t0 = 0.4 fm to t1 = 1.5 fm,
so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.
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Example error budget from RBC/UKQCD 2018 (Fred’s alphaQED17
results used for window result)

4

a ud, conn, isospin
µ 202.9(1.4)S(0.2)C(0.1)V(0.2)A(0.2)Z 649.7(14.2)S(2.8)C(3.7)V(1.5)A(0.4)Z(0.1)E48(0.1)E64

a s, conn, isospin
µ 27.0(0.2)S(0.0)C(0.1)A(0.0)Z 53.2(0.4)S(0.0)C(0.3)A(0.0)Z

a c, conn, isospin
µ 3.0(0.0)S(0.1)C(0.0)Z(0.0)M 14.3(0.0)S(0.7)C(0.1)Z(0.0)M

a uds, disc, isospin
µ �1.0(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z �11.2(3.3)S(0.4)V(2.3)L

a QED, conn
µ 0.2(0.2)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E 5.9(5.7)S(0.3)C(1.2)V(0.0)A(0.0)Z(1.1)E

a QED, disc
µ �0.2(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E �6.9(2.1)S(0.4)C(1.4)V(0.0)A(0.0)Z(1.3)E

a SIB
µ 0.1(0.2)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E48 10.6(4.3)S(0.6)C(6.6)V(0.1)A(0.0)Z(1.3)E48

a udsc, isospin
µ 231.9(1.4)S(0.2)C(0.1)V(0.3)A(0.2)Z(0.0)M 705.9(14.6)S(2.9)C(3.7)V(1.8)A(0.4)Z(2.3)L(0.1)E48

(0.1)E64(0.0)M
a QED, SIB

µ 0.1(0.3)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E(0.0)E48 9.5(7.4)S(0.7)C(6.9)V(0.1)A(0.0)Z(1.7)E(1.3)E48

a R�ratio
µ 460.4(0.7)RST(2.1)RSY

aµ 692.5(1.4)S(0.2)C(0.2)V(0.3)A(0.2)Z(0.0)E(0.0)E48 715.4(16.3)S(3.0)C(7.8)V(1.9)A(0.4)Z(1.7)E(2.3)L
(0.0)b(0.1)c(0.0)S(0.0)Q(0.0)M(0.7)RST(2.1)RSY (1.5)E48(0.1)E64(0.3)b(0.2)c(1.1)S(0.3)Q(0.0)M

TABLE I. Individual and summed contributions to aµ multiplied by 1010. The left column lists results for the window method
with t0 = 0.4 fm and t1 = 1 fm. The right column shows results for the pure first-principles lattice calculation. The respective
uncertainties are defined in the main text.

We furthermore propagate uncertainties of the lattice
spacing (A) and the renormalization factors ZV (Z). For
the quark-disconnected contribution we adopt the addi-
tional long-distance error discussed in Ref. [29] (L) and
for the charm contribution we propagate uncertainties
from the global fit procedure [22] (M). Systematic errors
of the R-ratio computation are taken from Ref. [1] and
quoted as (RSY). The neglected bottom quark (b) and
charm sea quark (c) contributions as well as e↵ects of
neglected QED (Q) and SIB (S) diagrams are estimated
as described in the previous section.

For the QED and SIB corrections, we assume domi-

nance of the low-lying ⇡⇡ and ⇡� states and fit C
(1)
QED(t)

as well as C
(1)
�mf

(t) to (c1 + c0t)e
�Et, where we vary c0

and c1 for fixed energy E. The resulting p-values are
larger than 0.2 for all cases and we use this functional
form to compute the respective contribution to aµ. For
the QED correction, we vary the energy E between the
lowest ⇡⇡ and ⇡� energies and quote the di↵erence as ad-
ditional uncertainty (E). For the SIB correction, we take
E to be the ⇡⇡ ground-state energy.

For the light quark contribution of our pure lattice re-
sult we use a bounding method [37] similar to Ref. [38]
and find that upper and lower bounds meet within errors
at t = 3.0 fm. We vary the ground-state energy that en-
ters this method [39] between the free-field and interact-
ing value [40]. For the 48I ensemble we find Efree

0 = 527.3
MeV, E0 = 517.4 MeV + O(1/L6) and for the 64I en-
semble we have Efree

0 = 536.1 MeV, E0 = 525.1 MeV
+ O(1/L6). We quote the respective uncertainties as
(E48) and (E64). The variation of ⇡⇡ ground-state en-
ergy on the 48I ensemble also enters the SIB correction
as described above.

Figure 5 shows our results for the window method with
t0 = 0.4 fm. While the partial lattice and R-ratio contri-
butions change by several 100 ⇥ 10�10, the sum changes
only at the level of quoted uncertainties. This provides
a non-trivial consistency check between the lattice and
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FIG. 5. We show results for the window method with t0 = 0.4
fm as a function of t1. The top panel shows the combined
aµ, the middle panel shows the partial contributions of the
lattice and R-ratio data, and the bottom shows the respective
uncertainties.

the R-ratio data for length scales between 0.4 fm and
2.6 fm. We expand on this check in the supplementary
material. The uncertainty of the current analysis is min-
imal for t1 = 1 fm, which we take as our main result
for the window method. For t0 = t1 we reproduce the
value of Ref. [1]. In Fig. 6, we show the t1-dependence
of individual lattice contributions and compare our re-
sults with previously published results in Fig. 7. Our
combined lattice and R-ratio result is more precise than
the R-ratio computation by itself and reduces the ten-
sion to the other R-ratio results. Results for di↵erent
window parameters t0 and t1 and a comparison of indi-
vidual components with previously published results are
provided as supplementary material.

For the pure lattice number the dominant errors are (S) statistics, (V)
finite-volume errors, and (C) the continuum limit extrapolation
uncertainty.

For the window method there are additional R-ratio systematic (RSY)
and R-ratio statistical (RST) errors.
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Improved systematics – compute finite-volume effects from
first-principles

RBC/UKQCD study of QCD at physical pion mass at three different
volumes:

L = 4.66 fm, L = 5.47 fm, L = 6.22 fm

Results for light-quark isospin-symmetric connected contribution:

I aµ(L = 6.22 fm)− aµ(L = 4.66 fm) = 12.2× 10−10 (sQED),
21.6(6.3)× 10−10 (lattice QCD)

I First time this is resolved from zero in a first-principles calculation
at physical pion mass (previously bound in E. Shintani et al.,
arXiv:1805.04250)

I Need to do better than sQED in finite-volume
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Gounaris-Sakurai-Lüscher method [H. Meyer 2012, Mainz 2017]

I Produce FV spectrum and matrix elements from phase-shift study
(Lüscher method for spectrum and amplitudes, GS for phase-shift
parametrization)

I This allows for a prediction of FV effects beyond chiral perturbation
theory given that the phase-shift parametrization captures all
relevant effects (can be checked against lattice data)

I This method is now being employed by ETMC, Mainz, and
RBC/UKQCD.
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First constrain the p-wave phase shift from our L = 6.22 fm
physical pion mass lattice:
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GSL finite-volume results compared to sQED and lattice

Results for light-quark isospin-symmetric connected contribution:

I FV difference between aµ(L = 6.22 fm)− aµ(L = 4.66
fm) = 12.2× 10−10 (sQED), 21.6(6.3)× 10−10 (lattice QCD),
20(3)× 10−10 (GSL)

I GSL prediction agrees with actual FV effect measured on the lattice,
sQED is in slight tension, two-loop FV ChPT to be compared next
Bijnens and Relefors 2017

I Use GSL to update FV correction of Phys. Rev. Lett. 121, 022003
(2018): aµ(L→∞)− aµ(L = 5.47 fm) = 16(4)× 10−10 (sQED),
22(1)× 10−10 (GSL); sQED error estimate based on Bijnens and
Relefors 2017, table 1.
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Improved statistics and systematics – Bounding Method
BMW/RBC/UKQCD 2016

The correlator in finite volume

C (t) =
∑

n

|〈0|V |n〉|2e−Ent .

We can bound this correlator at each t from above and below by
the correlators

C̃ (t;T , Ẽ ) =

{
C (t) t < T ,

C (T )e−(t−T )Ẽ t ≥ T

for proper choice of Ẽ . We can chose Ẽ = E0 (assuming
E0 < E1 < . . .) to create a strict upper bound and any Ẽ larger
than the local effective mass to define a strict lower bound.
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Improved Bounding Method RBC/UKQCD 2018

Therefore if we had precise knowledge of the lowest n = 0, . . . ,N
values of |〈0|V |n〉| and En, we could define a new correlator

CN(t) = C (t)−
N∑

n=0

|〈0|V |n〉|2e−Ent

which we could bound much more strongly through the larger
lowest energy EN+1 � E0. New method: do a GEVP study of FV
spectrum to perform this subtraction.

Reduces statistical error of RBC/UKQCD 2018 light quark result
from 10× 10−10 to approximately 3× 10−10
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Conclusions and Outlook

I Target precision for HVP is of O(1× 10−10) in a few years; for now
consolidate error at O(3× 10−10)

I Dispersive result from e+e− → hadrons right now is at 3× 10−10

but limited by experimental tensions

I Two-pion channel from DHMZ17, KNT18 (e+e−) and DHMYZ13
(τ) are scattered by 12.5× 10−10

Experimental updates and first-principles calculation of
isospin-breaking corrections desirable. Combination of dispersive
and lattice results can in short term lessen dependence on contested
experimental data.

I Lattice efforts by many groups, results at physical pion mass, QED,
SIB corrections available. New methods to reduce statistical and
systematic errors.

I By end of this year, first-principles lattice result could have error of
O(5× 10−10)

I In a few years, new spacelike measurements from MUonE
experiment (t-channel scattering) may be available
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Status of HVP determinations

No new physics
KNT 2018

Jegerlehner 2017
DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018

ETMC 2018
Mainz 2018 (prelim)
RBC/UKQCD 2018

BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013

610 630 650 670 690 710 730 750
aµ × 1010

Green: LQCD, Orange: LQCD+Dispersive, Purple: Dispersive
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Backup



We perform the calculation as a perturbation around an
isospin-symmetric lattice QCD computation with two degenerate light
quarks with mass mlight and a heavy quark with mass mheavy tuned to
produce a pion mass of 135.0 MeV and a kaon mass of 495.7 MeV.

The correlator is expanded in the fine-structure constant α as well as
∆mup, down = mup, down −mlight, and ∆mstrange = mstrange −mheavy.
We write

C (t) = C (0)(t) + αC
(1)
QED(t) +

∑

f

∆mf C
(1)
∆mf

(t)

+O(α2, α∆m,∆m2) .

The correlators of this expansion are computed in lattice QCD with
dynamical up, down, and strange quarks. We compute the missing
contributions to aµ from charm sea quarks in perturbative QCD (RHAD)
by integrating the time-like region above 2 GeV and find them to be
smaller than 0.3× 10−10.



We tune the bare up, down, and strange quark masses mup, mdown, and
mstrange such that the π0, π+, K 0, and K+ meson masses computed in
our calculation agree with the respective experimental measurements.
The lattice spacing is determined by setting the Ω− mass to its
experimental value.

We perform the lattice calculations for the light quark contributions using
RBC/UKQCD’s 48I and 64I lattice configurations with lattice cutoffs
a−1 = 1.730(4) GeV and a−1 = 2.359(7) GeV and a larger set of
ensembles with up to a−1 = 2.774(10) GeV for the charm contribution.

From the parameter tuning procedure on the 48I we find
∆mup = −0.00050(1), ∆mdown = 0.00050(1), and
∆mstrange = −0.0002(2).

The shift of the Ω− mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its effect on C (t) is
therefore not included separately.
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Consolidate continuum limit

Adding a finer lattice



Add a−1 = 2.77 GeV lattice spacing

I Third lattice spacing for strange data (a−1 = 2.77 GeV with
mπ = 234 MeV with sea light-quark mass corrected from global fit):
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In this figure, we have attempted a linear fit in a2. The p value of all shown
fits is good and does not resolve the a4 or a2 log(a2) coe�cients from zero. We
can, however, allow them to be included in the fit (for now just a4), which
significantly increases the uncertainty of the extrapolation
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A better way to study the quality of agreement of di↵erent discretizations
is to look at correlated di↵erences between the di↵erent methods on the same
ensemble. In these di↵erences virtually all statistical noise cancels

4

I For light quark need new ensemble at physical pion mass. Proposed
for early science time at Summit Machine at Oak Ridge later this
year (a−1 = 2.77 GeV with mπ = 139 MeV).



Window method with fixed t0 = 0.4 fm

4

a ud, conn, isospin
µ 202.9(1.4)S(0.2)C(0.1)V(0.2)A(0.2)Z 649.7(14.2)S(2.8)C(3.7)V(1.5)A(0.4)Z(0.1)E48(0.1)E64

a s, conn, isospin
µ 27.0(0.2)S(0.0)C(0.1)A(0.0)Z 53.2(0.4)S(0.0)C(0.3)A(0.0)Z

a c, conn, isospin
µ 3.0(0.0)S(0.1)C(0.0)Z(0.0)M 14.3(0.0)S(0.7)C(0.1)Z(0.0)M

a uds, disc, isospin
µ �1.0(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z �11.2(3.3)S(0.4)V(2.3)L

a QED, conn
µ 0.2(0.2)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E 5.9(5.7)S(0.3)C(1.2)V(0.0)A(0.0)Z(1.1)E

a QED, disc
µ �0.2(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E �6.9(2.1)S(0.4)C(1.4)V(0.0)A(0.0)Z(1.3)E

a SIB
µ 0.1(0.2)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E48 10.6(4.3)S(0.6)C(6.6)V(0.1)A(0.0)Z(1.3)E48

a udsc, isospin
µ 231.9(1.4)S(0.2)C(0.1)V(0.3)A(0.2)Z(0.0)M 705.9(14.6)S(2.9)C(3.7)V(1.8)A(0.4)Z(2.3)L(0.1)E48

(0.1)E64(0.0)M
a QED, SIB

µ 0.1(0.3)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E(0.0)E48 9.5(7.4)S(0.7)C(6.9)V(0.1)A(0.0)Z(1.7)E(1.3)E48

a R�ratio
µ 460.4(0.7)RST(2.1)RSY

aµ 692.5(1.4)S(0.2)C(0.2)V(0.3)A(0.2)Z(0.0)E(0.0)E48 715.4(16.3)S(3.0)C(7.8)V(1.9)A(0.4)Z(1.7)E(2.3)L
(0.0)b(0.1)c(0.0)S(0.0)Q(0.0)M(0.7)RST(2.1)RSY (1.5)E48(0.1)E64(0.3)b(0.2)c(1.1)S(0.3)Q(0.0)M

TABLE I. Individual and summed contributions to aµ multiplied by 1010. The left column lists results for the window method
with t0 = 0.4 fm and t1 = 1 fm. The right column shows results for the pure first-principles lattice calculation. The respective
uncertainties are defined in the main text.

We furthermore propagate uncertainties of the lattice
spacing (A) and the renormalization factors ZV (Z). For
the quark-disconnected contribution we adopt the addi-
tional long-distance error discussed in Ref. [29] (L) and
for the charm contribution we propagate uncertainties
from the global fit procedure [22] (M). Systematic errors
of the R-ratio computation are taken from Ref. [1] and
quoted as (RSY). The neglected bottom quark (b) and
charm sea quark (c) contributions as well as e↵ects of
neglected QED (Q) and SIB (S) diagrams are estimated
as described in the previous section.

For the QED and SIB corrections, we assume domi-

nance of the low-lying ⇡⇡ and ⇡� states and fit C
(1)
QED(t)

as well as C
(1)
�mf

(t) to (c1 + c0t)e
�Et, where we vary c0

and c1 for fixed energy E. The resulting p-values are
larger than 0.2 for all cases and we use this functional
form to compute the respective contribution to aµ. For
the QED correction, we vary the energy E between the
lowest ⇡⇡ and ⇡� energies and quote the di↵erence as ad-
ditional uncertainty (E). For the SIB correction, we take
E to be the ⇡⇡ ground-state energy.

For the light quark contribution of our pure lattice re-
sult we use a bounding method [37] similar to Ref. [38]
and find that upper and lower bounds meet within errors
at t = 3.0 fm. We vary the ground-state energy that en-
ters this method [39] between the free-field and interact-
ing value [40]. For the 48I ensemble we find Efree

0 = 527.3
MeV, E0 = 517.4 MeV + O(1/L6) and for the 64I en-
semble we have Efree

0 = 536.1 MeV, E0 = 525.1 MeV
+ O(1/L6). We quote the respective uncertainties as
(E48) and (E64). The variation of ⇡⇡ ground-state en-
ergy on the 48I ensemble also enters the SIB correction
as described above.

Figure 5 shows our results for the window method with
t0 = 0.4 fm. While the partial lattice and R-ratio contri-
butions change by several 100 ⇥ 10�10, the sum changes
only at the level of quoted uncertainties. This provides
a non-trivial consistency check between the lattice and
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FIG. 5. We show results for the window method with t0 = 0.4
fm as a function of t1. The top panel shows the combined
aµ, the middle panel shows the partial contributions of the
lattice and R-ratio data, and the bottom shows the respective
uncertainties.

the R-ratio data for length scales between 0.4 fm and
2.6 fm. We expand on this check in the supplementary
material. The uncertainty of the current analysis is min-
imal for t1 = 1 fm, which we take as our main result
for the window method. For t0 = t1 we reproduce the
value of Ref. [1]. In Fig. 6, we show the t1-dependence
of individual lattice contributions and compare our re-
sults with previously published results in Fig. 7. Our
combined lattice and R-ratio result is more precise than
the R-ratio computation by itself and reduces the ten-
sion to the other R-ratio results. Results for di↵erent
window parameters t0 and t1 and a comparison of indi-
vidual components with previously published results are
provided as supplementary material.

For t = 1 fm approximately 50% of uncertainty comes from lattice and 50% of
uncertainty comes from the R-ratio. Is there a small slope? More in a few slides!

Can use this to check experimental data sets; see my KEK talk for more details



Predicts |Fπ(s)|2:
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We can then also predict matrix elements and energies for our
other lattices; successfully checked!


