

## Searching for Muon to electron conversion: The Mu2e experiment at Fermilab

Richie Bonventre

Tau 2018, Amsterdam

Lawrence Berkeley National Lab



#### Mu2e: the basics

• Mu2e will search for neutrinoless conversion of a muon to an electron in a nuclear environment:

$$\mu^- N \rightarrow e^- N$$

- This would violate **charged lepton flavor**, something that has never been seen before
- Any detection of charged lepton flavor violation would be an unambiguous sign of new physics! (SM contribution is  $< 10^{-50}$ )



• Mu2e goal is a  $10^4$  improvement! (previous limit  $7{\times}10^{-13}$  from SINDRUM II)



Measure the ratio of conversions to muon captures:

$$R_{\mu e} = \frac{\mu^{-} + A(Z,N) \rightarrow e^{-} + A(Z,N)}{\mu^{-} + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$

- Signal of CLFV conversion is single monoenergetic electron
- Backgrounds:
  - Beam related:  $\pi^- N o \gamma N'$ ,  $\gamma \to e^+ e^-$
  - Cosmic rays: μ<sup>−</sup> → e<sup>−</sup>ν<sub>μ</sub> ν<sub>μ</sub>
  - Muon Decay in orbit:  $\mu^- N o e^- N 
    u_\mu \overline{
    u_e}$

2/18



Measure the ratio of conversions to muon captures:

$$R_{\mu e} = \frac{\mu^{-} + A(Z,N) \rightarrow e^{-} + A(Z,N)}{\mu^{-} + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$

- Signal of CLFV conversion is single monoenergetic electron
- Backgrounds:
  - Beam related:  $\pi^- N \rightarrow \gamma N'$ ,  $\gamma \rightarrow e^+ e^-$  (Delayed event window)
  - Cosmic rays:  $\mu^- \rightarrow e^- \nu_\mu \overline{\nu_e}$
  - Muon Decay in orbit:  $\mu^- N \rightarrow e^- N \nu_{\mu} \overline{\nu_e}$  2/18



Measure the ratio of conversions to muon captures:

$$R_{\mu e} = \frac{\mu^{-} + A(Z,N) \rightarrow e^{-} + A(Z,N)}{\mu^{-} + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$

- Signal of CLFV conversion is single monoenergetic electron
- Backgrounds:
  - Beam related:  $\pi^- N \rightarrow \gamma N'$ ,  $\gamma \rightarrow e^+ e^-$  (Delayed event window)
  - Cosmic rays:  $\mu^- \rightarrow e^- \nu_\mu \overline{\nu_e}$  (Active veto)
  - Muon Decay in orbit:  $\mu^- N \rightarrow e^- N \nu_{\mu} \overline{\nu_e}$  2/18



Measure the ratio of conversions to muon captures:

$$R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$

- Signal of CLFV conversion is single monoenergetic electron
- Backgrounds:
  - Beam related:  $\pi^- N \rightarrow \gamma N'$ ,  $\gamma \rightarrow e^+ e^-$  (Delayed event window)
  - Cosmic rays:  $\mu^- \rightarrow e^- \nu_\mu \overline{\nu_e}$  (Active veto)
  - Muon Decay in orbit:  $\mu^- N \rightarrow e^- N \nu_{\mu} \overline{\nu_e}$  (Momentum resolution) 2/18

#### Mu2e Proton Beam



- 8 GeV 8 kW proton beam using protons from booster
- Resonantly extracted to get pulses of  $4 \times 10^7$  protons separated by 1.7  $\mu s$
- Runs simultaneously with NOVA
- Extinction factor (ratio of out-of-time protons to in-time protons) of  $> 10^{-10}$



3/18



~25 m

- Consists of three superconducting solenoids:
  - Production Solenoid (PS)
  - Transport Solenoid (TS)
  - Detector Solenoid (DS)



- Consists of three superconducting solenoids:
  - Production Solenoid (PS)
  - Transport Solenoid (TS)
  - Detector Solenoid (DS)



- Consists of three superconducting solenoids:
  - Production Solenoid (PS)
  - Transport Solenoid (TS)
  - Detector Solenoid (DS)



- Consists of three superconducting solenoids:
  - Production Solenoid (PS)
  - Transport Solenoid (TS)
  - Detector Solenoid (DS)

## Production Target and Solenoid produce slow muon beam in the reverse direction of the proton beam



- Tungsten production target
- Magnetic mirror traps and redirects back to TS

#### Transport Solenoid sign selects charged particles



#### Detector solenoid directs electrons to detector elements



- Muons stopped on thin aluminum foils, again graded field for magnetic mirror
- Constant field in tracking volume
- High precision straw tracker in vacuum
- Electromagnetic calorimeter for PID

#### Straw Tracker Detector

1620 mm

- 18 stations, each containing 12x 120° panels for stereo measurement
- Blind to DIO electron momentum peak and beam flash
- Expected resolution better than 200 keV/c

3270.0 mm







#### Straw Tracker Detector

- $\sim$ 21,000 low mass straw tubes in vacuum
- + 5 mm diameter, 15  $\mu$ m thick mylar walls
- Measure transverse position to  ${\sim}200\mu{\rm m}$ , longitudinal position along straw to  ${\sim}4{\rm cm}$
- Waveform digitized to reject proton hits





# 8 straw tracker prototype used to tune simulation and verify expected resolution



**Transverse Resolution** 

Longitudinal Resolution

Efficiency



#### Calorimeter



- Two annular disks separated by half a "wavelength" (70cm) of electron's helical path
  - Maximize probability to hit at least one disk
- Each disk contains 674 undoped Csl 34x34x200 mm<sup>3</sup> crystals read out by SiPMs
- 0.5 ns time, 5% energy, 1 cm position measurement independent of straw tracker
- Provides particle ID for track rejection
- Seed for tracking algorithm / trigger

#### **Calorimeter Prototypes**



 Small 3x3 prototype tested in 80-120 MeV e<sup>-</sup> beam

•  $\sigma_{\it E} \sim$  6.5% and  $\sigma_t \sim$  110ps at 100 MeV

• Larger preproduction prototype (51 crystals, 102 SiPMs, 102 FEE boards)



- Expect cosmic rays to produce 1 conversion-like event per day
- 4 overlapping layers of scintillator, read out on both ends with SiPMs
  - Veto on 3-fold coincidence
- Covers entire DS, half of TS, better than  $10^{-4}$  inefficiency



#### Expected backgrounds for 3 year run

| Process                                                                                                 | Expected event yield                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cosmic ray muons<br>DIO<br>Antiprotons<br>Pion capture<br>Muon DIF<br>Pion DIF<br>Beam electrons<br>RMC | $\begin{array}{l} 0.21\pm 0.02(\text{stat})\pm 0.06(\text{syst})\\ 0.14\pm 0.03(\text{stat})\pm 0.11(\text{syst})\\ 0.040\pm 0.001(\text{stat})\pm 0.020(\text{syst})\\ 0.021\pm 0.001(\text{stat})\pm 0.002(\text{syst})\\ < 0.003\\ 0.001\pm < 0.001\\ (2.1\pm 1.0)\times 10^{-4}\\ 0.000_{-0.000}^{+0.004} \end{array}$ |
| Total                                                                                                   | $0.41 \pm 0.13 (stat+syst)$                                                                                                                                                                                                                                                                                                |

- $\bullet\,$  Fewer than  ${\sim}0.5$  background events expected over entire run
- + 3.6 x  $10^{20}$  protons on target over 3 years  $\rightarrow \sim 10^{18}$  stopped muons

#### Simulation and Reconstruction



1  $\mu {\rm s}$  selection window after beam flash



Hits selected by track finder within  $\pm 50~\text{ns}$  selection window around potential track

- Detailed Geant4 simulation of full detector
- Straw response tuned to data and detector prototype measurements
- Simulate from production target forward (including backgrounds)
- Kalman Filter track fit

## Sensitivity



- Discovery reach (5 $\sigma$ ):  $R_{\mu e} \ge 2 \times 10^{-16}$
- Exclusion power (90% CL):  $R_{\mu e} \ge 8 \times 10^{-17}$

#### Construction



## Construction





## Backup

AlCap



- Joint project by Mu2e and COMET
- Measure particles emitted after muon capture on Al

#### Beam structure



|                               |   | Parameter                                  | Design<br>Value       | Requirement            | Unit              |
|-------------------------------|---|--------------------------------------------|-----------------------|------------------------|-------------------|
|                               |   | Total protons on target                    | 4.7×10 <sup>20</sup>  | ≥ 4.7×10 <sup>20</sup> | protons           |
| Beam Intensity Time Structure | ſ | Time between beam pulses                   | 1695                  | > 864                  | nsec              |
|                               |   | Maximum variation in pulse separation      | < 1                   | 10                     | nsec              |
|                               | J | Spill duration                             | 43.1                  | > 20                   | msec              |
|                               | 1 | Beamline Transmission Window               | 230                   | < 250                  | nsec              |
|                               |   | Transmission Window Jitter (rms)           | < 5                   | <10                    | nsec              |
|                               |   | Out-of-time extinction factor              | 1.6×10 <sup>-12</sup> | $\le 10^{-10}$         |                   |
|                               | ſ | Average proton intensity per pulse         | 3.9×10 <sup>7</sup>   | < 5.0×10 <sup>7</sup>  | protons/<br>pulse |
|                               | ٦ | Maximum Pulse to Pulse intensity variation | 50                    | 50                     | %                 |
|                               | ſ | Target rms spot size                       | 1                     | 0.5 - 1.5              | mm                |
|                               | 1 | Target rms beam divergence                 | 0.5                   | < 4.0                  | mrad              |

#### Tracker prototype



#### Stopping Target Monitor measures capture rate

- Muons cascade to 1s state emitting x-rays
- HPGe detector monitor these x-rays to measure capture rate



• Normalization of measurement  $R_{\mu e} = \frac{\mu^{-} + A(Z,N) \rightarrow e^{-} + A(Z,N)}{\mu^{-} + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$ 



#### Extinction Monitor located downstream of production target



#### Extinction Monitor located downstream of production target



Spectrometer Magnet: Repurposed dipole magnet bends out low energy elections generated by muons stopping in the upstream silicon

| Process                                                  | Current Limit                      | Next Generation exp.                                  |
|----------------------------------------------------------|------------------------------------|-------------------------------------------------------|
| $\tau \to \mu \eta$                                      | BR < 6.5 E-8                       | 10 <sup>-9</sup> - 10 <sup>-10</sup> (Belle II, LHCb) |
| $\tau \to \mu \gamma$                                    | BR < 6.8 E-8                       |                                                       |
| $	au  ightarrow \mu \mu \mu$                             | BR < 3.2 E-8                       |                                                       |
| $\tau \to \mathrm{eee}$                                  | BR < 3.6 E-8                       |                                                       |
| $K_L \rightarrow e\mu$                                   | BR < 4.7 E-12                      |                                                       |
| $\mathrm{K^+} \rightarrow \pi^+ \mathrm{e^-} \mu^+$      | BR < 1.3 E-11                      |                                                       |
| $B^0 \rightarrow e\mu$                                   | BR < 7.8 E-8                       |                                                       |
| ${\rm B^+} \rightarrow {\rm K^+e}\mu$                    | ${\sf BR} < 9.1 \; {\sf E}{ m -}8$ |                                                       |
| $\mu^+ \rightarrow {\rm e}^+ \gamma$                     | BR < 4.2 E-13                      | 10 <sup>-14</sup> (MEG)                               |
| $\mu^+ \rightarrow \mathrm{e^+e^+e^-}$                   | BR < 1.0 E-12                      | 10 <sup>-16</sup> (PSI)                               |
| $\mu^- \mathrm{N} {\rightarrow} \mathrm{e}^- \mathrm{N}$ | $R_{\mu e} < 7.0$ E-13             | 10 <sup>-17</sup> (Mu2e, COMET)                       |

#### Determining model with CLFV





- Beam backgrounds reduced by degrader
  - Pions have half the range in  $CH_2$  compared to muons
- Limit:  $7 \times 10^{-13}$  (90% confidence) on Au

#### Previous experiments: SINDRUM II



#### Achieving required beam extinction



- Beam from delivery ring starts with  $10^{-4}$  extinction
- 2 AC dipoles coupled with collimators expected to bring extinction to  $10^{-12}$

#### More prototypes





TS prototype module

Cosmic ray veto

History



#### **CLFV Effective Lagrangian**

