## Taus at the future electron positron Higgs factory

Manqi Ruan

# SM is **NOT** the end of story...

- Naturalness?
  - Fine tuning of the Higgs mass
- Vacuum Stability?
  - Masses of Higgs and top quark
- Hierarchy?
  - From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Unification?
- Dark matter?
- Baryogenisis?
- ...
- Most issues related to Higgs

m<sub>H</sub><sup>2</sup> = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)<sup>2</sup>! ?



# Higgs @ electron positron collider







S/B ~ 1:100 – 1000 (7 orders of magnitudes better than HL-LHC)

Observables: Higgs mass, CP,  $\sigma(ZH)$ , event rates ( $\sigma(ZH, vvH)^*Br(H \rightarrow X)$ ), Diff. Distributions

Derive: Absolute Higgs width, branching ratios, couplings

The precision is roughly 1 order of magnitude better than HL-LHC

## **Electron Positron Higgs factories**



e<sup>+</sup>e<sup>-</sup> Collider Luminosities

#### CEPC

| <b>Operation mode</b>                     | Z factory    | $\boldsymbol{W}$ threshold scan | Higgs factory |
|-------------------------------------------|--------------|---------------------------------|---------------|
| $\sqrt{s}$ (GeV)                          | 91.2         | 158 - 172                       | 240           |
| $L (10^{34} cm^{-2} s^{-1})$              | 16-32        | 10                              | 3             |
| Running time (years)                      | 2            | 1                               | 7             |
| Integrated Luminosity (ab <sup>-1</sup> ) | 8 - 16       | 2.6                             | 5.6           |
| Higgs yield                               | -            | -                               | $10^{6}$      |
| W yield                                   | -            | $10^{7}$                        | $10^{8}$      |
| Z yield                                   | $10^{11-12}$ | $10^{9}$                        | $10^{9}$      |

**Table 3.2:** Instantaneous and integrated luminosities at different values of center-of-mass energy ( $\sqrt{s}$ ) and anticipated corresponding boson yields at the CEPC. The range of luminosities for the Z factory correspond to the two possible solenoidal magnetic fields, 3 or 2 Tesla.



## $H \rightarrow \tau \tau$ at CEPC/ILC

- Perfect Physics benchmark
  - Physics reach: High accuracy & Sensitive to NP
  - Detector design/optimization
    - Separation performance
    - Variety of physics objects, Depends on Tracker, Calorimeter & VTX...
- Physics analyses
  - μ(H→ττ) at CEPC (with 5 ab<sup>-1</sup> ~ 1 Million Higgs at 240 GeV c.m.s)
  - μ(H→ττ) at ILC (with 2 ab<sup>-1</sup> ~ 0.6 M Higgs at 250 GeV c.m.s)
  - Higgs CP measurement at the ILC



## Detectors

- ILC: PFA Oriented design
  - ILD
  - SiD
- CEPC
  - Baseline: PFA Oriented Design
    - ILD-like: APODIS
    - SiD-like
  - Alternative: Dual Readout Calorimeter + Wire Chamber
- ILD: High Granularity Calorimeter + Time Projection Chamber





## Tracking



## Clustering



Critical energy to separate an evenly decay  $\pi_0$ : 30 GeV

## Jets



Amplitude ~ 3.5% - 5.5% for E ~ 20 – 100 GeV Jets Depends on the Flavor, direction and jet energy Superior to LHC experiments by 3-4 times 24/09/18 Tau WS@Amsterdam



- Two classes of events with tau:
  - Leptonic events: i.e, IITT(ZZ/ZH), vvTT(ZZ/ZH/WW),  $Z \rightarrow TT$ ;
  - Hadronic ones: i.e,  $ZZ/ZH \rightarrow qq\tau\tau$ ,  $WW \rightarrow qq\tau\tau$ ;

## At Leptonic events



- Extremely powerful event selection: signal efficiency of ~90% entire SM background reduced by 5 orders of magnitudes
- Isolated, energetic tracks are intentionally identified as tau candidates to be distinguished by VTX measurement (impact parameter)

## At hadronic events



TAURUS (Tau ReconstrUction toolS) optimization in progress

Tau WS@Amsterdam

## Information from the TT/qq system



Event selection: Request a pair of tau; visible mass of di-tau pair; Invariant/recoil mass of di-jet;

|                    | m <sub>jj</sub> | m <sub>jj-recoil</sub> |
|--------------------|-----------------|------------------------|
| Signal: Z(qq)H(тт) | 91.2            | 125                    |
| Z(ττ)H(qq)         | 125             | 91.2                   |
| ZZ                 | 91.2            | 91.2                   |

## And from the VTX...



## Higgs boson coupling to $\tau\,\tau$

all studies with full simulation of ILD, all background processes, realistic reconstruction

 $e^+ e^- \rightarrow H Z \rightarrow \tau \tau + (ee, \mu \mu, q q)$ 

#### isolated narrow jets,

1 or 3 charged particles total jet charge ±1 invariant mass < 2 GeV/c<sup>2</sup> various cuts to reduce backgrounds colinear approximation to estimate momenta of ν from τ decay final multivariate analysis [BDT]

> expected precision at ILC on  $\sigma$  (h) · BR (h  $\rightarrow \tau \tau$ ): 1.2 % [ ILC250 / 2 ab<sup>-1</sup>] 1.0 % [ + ILC500 / 4 ab<sup>-1</sup>]



Eur. Phys. J. C75 (2015) no.12, 617



D. Jeans @ ICHEP18

http://research.kek.jp/people/jeans/ichep-higgs-jeans-final.pdf



#### CP in h $\rightarrow \tau \tau$ : sensitivity



D. Jeans @ ICHEP18



arXiv:1804.01241

## Summary

- An electron positron Higgs factory is crucial for future High energy physics exploration – multiple proposals
- The  $H{\rightarrow}\tau\tau$  is an excellent benchmark for the physics potential and detector design study
- The  $\mu(H \rightarrow \tau \tau)$  can be measured to o(1%) accuracy at CEPC/ILC...
  - CEPC: 0.8% with 1 Million Higgs boson; Cut based analysis that combines the information from di-tau, di-jet, and VTX system.
  - ILC: 1.2% with 0.6 Million Higgs, MVA based analysis.
- The CP phase can be measured to an accuracy of ~ 4 degree at ILC
- Intriguing physics with taus at future electron positron Higgs factories, lots of other benchmarks to be explored – Your idea/help is more than welcome!

## Backup

## Higgs measurement at e+e- & pp





|      | Yield                                                 | efficiency            | Comments                                                                                                                                               |
|------|-------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| LHC  | Run 1: 10 <sup>6</sup><br>Run 2/HL: 10 <sup>7-8</sup> | ~o(10 <sup>-3</sup> ) | High Productivity & High background, Relative<br>Measurements, Limited access to width, exotic ratio,<br>etc, Direct access to g(ttH), and even g(HHH) |
| CEPC | 10 <sup>6</sup>                                       | ~o(1)                 | Clean environment & Absolute measurement,<br>Percentage level accuracy of Higgs width & Couplings                                                      |

#### Tau WS@Amsterdam Complementary20

## Higgs coupling measurements



Full simulation on measurement with Event Counting

Comparing to HL-LHC: accuracy improved by 1 order of magnitude

Combined with HL-LHC: several measurement can be significantly improved

To be covered: Differential Measurements, etc.

## **Baseline detector Geometry**



### Baseline geometry and reconstruction



Performance at Lepton Kaon Photon Tau JET

## The optimization of the Vertex



| Fable 1. | Desigi | n parameters | of the CEI      | PC vertex system.    |
|----------|--------|--------------|-----------------|----------------------|
|          | R(mm)  | Z  (mm)      | $\sigma(\mu m)$ | material budget      |
| Layer 1  | 16     | 62.5         | 2.8             | 0.15%/X <sub>0</sub> |
| Layer 2  | 18     | 62.5         | 6               | 0.15%/X <sub>0</sub> |
| Layer 3  | 37     | 125.0        | 4               | 0.15%/X <sub>0</sub> |
| Layer 4  | 39     | 125.0        | 4               | 0.15%/X <sub>0</sub> |
| Layer 5  | 58     | 125.0        | 4               | 0.15%/X <sub>0</sub> |
| Layer 6  | 60     | 125.0        | 4               | 0.15%/X <sub>0</sub> |
|          |        |              |                 |                      |

 Table 2.
 Reference geometries

|                             | Scenario A (Aggressive) | Scenario B (Baseline) | Scenario C (Conservative) |  |  |
|-----------------------------|-------------------------|-----------------------|---------------------------|--|--|
| Material per layer/ $X_0$   | 0.075                   | 0.15                  | 0.3                       |  |  |
| Spatial resolution/ $\mu m$ | 1.4 - 3                 | 2.8 - 6               | 5 - 10                    |  |  |
| $R_{in}/mm$                 | 8                       | 16                    | 23                        |  |  |

#### Zhigang & Dan: *g(Hττ)* at μμΗ

|                                           | μμΗττ  | μμΗ<br>inclusive bkg | ZZ      | WW       | singleW  | singleZ | 2f        |
|-------------------------------------------|--------|----------------------|---------|----------|----------|---------|-----------|
| total generated                           | 2292   | 33557                | 5711445 | 44180832 | 15361538 | 7809747 | 418595861 |
| after preselection                        | 2246   | 32894                | 122674  | 223691   | 0        | 86568   | 1075886   |
| $N_{Trk}(A/B) < 6$<br>& $N_{Ph}(A/B) < 7$ | 2219   | 1039                 | 2559    | 352      | 0        | 9397    | 25583     |
| BDT>0.78                                  | 2135   | 885                  | 484     | 24       | 0        | 157     | 161       |
| efficiency                                | 93.15% | 2.63%                | < 0.01% | < 0.01%  | < 0.01%  | < 0.01% | < 0.01%   |



Conclusion: in this benchmark channel, VTX is sensitive but not crucial

# WW/ZZ $\rightarrow$ 4 jet event separation at full reconstruction



Inclusive WW/ZZ sample at 240 GeV c.m.s., each with 15k statistic Jet Clustering effect is very significant With realistic Jet Clustering and Arbor Reconstruction: WW/ZZ can be separated

Tau WS@Amsterdam

## **Physics Objects**



Tau WS@Amsterdam

#### Higgs benchmark analyses



# Jet Energy Scale

- JES ~ with 1% of the unity (without correction)
- Larger JES Observed at
  - Leading jets (correlated with energy)
  - Overlap/endcap region (Larger confusion term)
- JES ~ with 0.1% of unity anticipated after correction (geometry/energy dependent)

