

Tau Physics (theory) at the High Luminosity LHC

Emilie Passemar

Indiana University/Jefferson Laboratory

The 15th International Workshop on Tau Lepton Physics Amsterdam, September 28, 2018

Based on CERN Yellow Report on the Physics Potential of HL/HE-LHC WG4: Opportunities in Flavour Physics Conveners: Jorge Martin Camalich, Jure Zupan (Th), Alex Cerri (ATLAS), Sandra Malvezzi (CMS), Vladimir Gligorov (LHCb) HL/HE questions for taus, Authors for Theory M. Gonzalez-Alonso, Vincenzo Cirigliano, Adam Falkowski, Emilie Passemar

- Center-of-mass energy of 14 TeV for a total integrated luminosity of ~3000 fb⁻¹ in 2035 \longrightarrow 6 x 10¹⁴ τ
- 200 proton-proton interactions in each collision
- In this regime, experimental sensitivity to new physics enhanced
- Good place for flavour physics but some difficulties:
 - low momenta of typical flavour signatures
 - high pile-up which might affect the precision of the measurements
- Some advantages: Phase II GPD upgrades
 - new inner tracker
 - muon system improvements
 - topological trigger capabilities
 - possibility to use tracking in early stages of the trigger chain
 - good detection potential, good pile-up mitigation and
 - in some cases improved performance.

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	GPDs Phase II
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [255]	0.022	0.036	0.006	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [254]	0.029	0.032	0.008	_
$R_{\phi}, R_{pK}, R_{\pi}$	-	0.07, 0.04, 0.11	_	0.02,0.01,0.03	_
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [123]	4°	_	1°	_
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [152]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [569]	0.011	0.005	0.003	—
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [32]	$14 \mathrm{mrad}$	_	4 mrad	22 mrad [570]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [37]	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	150 mrad [571]	$60 \mathrm{mrad}$	-	$17 \mathrm{\ mrad}$	Under study [572]
a_{sl}^s	$33 \times 10^{-4} \ [193]$	$10 imes 10^{-4}$	_	$3 imes 10^{-4}$	_
$ V_{ub} / V_{cb} $	6% [186]	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [244]	34%	_	10%	21% [573]
$ au_{B^0_s ightarrow \mu^+ \mu^-}$	22% [244]	8%	-	2%	-
$S_{\mu\mu}$	-	-	-	0.2	-
$oldsymbol{b} ightarrow cl^- ar{ u}_l {f LUV} {f studies}$					
$\overline{R(D^*)}$	9% [199, 202]	3%	2%	1%	—
$R(J/\psi)$	25% [202]	8%	-	2%	_
<u>Charm</u>					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [574]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [222]	4.3×10^{-5}	3.5×10^{-5}	1.0×10^{-5}	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [210]	3.2×10^{-4}	4.6×10^{-4}	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{ m S}^0\pi\pi)~1.2 imes10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	—

What about τ ?

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	GPDs Phase II
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [255]	0.022	0.036	0.006	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [254]	0.029	0.032	0.008	_
$R_{\phi}, R_{pK}, R_{\pi}$	-	0.07, 0.04, 0.11	_	0.02,0.01,0.03	_
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [123]	4°	—	1°	—
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [152]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm s}^0$	0.04 [569]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [32]	14 mrad	—	4 mrad	22 mrad [570]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [37]	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	150 mrad [571]	$60 \mathrm{\ mrad}$	_	$17 \mathrm{mrad}$	Under study [572]
a_{sl}^s	33×10^{-4} [193]	$10 imes 10^{-4}$	_	$3 imes 10^{-4}$	-
$ V_{ub} / V_{cb} $	6% [186]	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$90\% \ [244]$	34%	_	10%	21% [573]
$ au_{B^0_c ightarrow \mu^+ \mu^-}$	22% [244]	8%	_	2%	_
$S_{\mu\mu}$	_	_	-	0.2	_
$oldsymbol{b} ightarrow cl^- ar{ u}_l {f LUV} {f studies}$					
$\overline{R(D^*)}$	$9\% \ [199, 202]$	3%	2%	1%	_
$R(J/\psi)$	$25\% \ [202]$	8%	_	2%	_
<u>Charm</u>					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [574]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [222]	4.3×10^{-5}	3.5×10^{-5}	1.0×10^{-5}	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [210]	3.2×10^{-4}	4.6×10^{-4}	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{ m S}^0\pi\pi)~1.2 imes10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	_

$\tau \rightarrow 3\mu$ is used as a benchmark of CMS muon detector upgrade performance

- **Emilie Passemar**
- Charged lepton flavour violation, Electromagnetic dipole moments Muon g-2, 2 photon physics Precision EW tests

ys $\tau \rightarrow (\overline{u}d, \overline{u}s)v_{\tau}$

Exclusive τ decays

 $\tau \rightarrow (PP, PPP, ...) v_{\tau}$

- Hadronic decays:

Lepton Universality

Michel parameters

- Inclusive
$$\tau$$
 decay

 τ rich phenomenology

Leptonic decays:

resonance parameters
Hadronization of QCD currents
Hadronic contribution to muon g-2
CP violation in
$$K\pi$$

Role of HL LHC?

6

 v_{τ}

 $d_{\theta} = V_{ud}d + V_{us}s$

 e^{-}, μ^{-}

 $\overline{V}_e, \overline{V}_u$

Hadrons

- **Emilie Passemar**
- Muon g-2, 2 photon physicsPrecision EW tests

Role of HL LHC?

Charged lepton flavour violation, Electromagnetic dipole moments

1. Charged Lepton-Flavour Violation

1.1 Introduction and Motivation

- Lepton Flavour Number is an « accidental » symmetry of the SM ($m_v=0$)
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression in unobservably small rates!

E.g.: $\mu \rightarrow e\gamma$ $Br(\mu \rightarrow e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{1i}}{M^2_W} \right|^2 < 10^{-54}$ Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

$$\left[Br(\tau\to\mu\gamma)<10^{-40}\right]$$

- Extremely clean probe of beyond SM physics
- In New Physics models: seazible effects Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

1.1 Introduction and Motivation

In New Physics scenarios CLFV can reach observable levels in several channels

Talk by D. Hitlin	$ au ightarrow \mu \gamma \ au ightarrow \pi$ -	$\rightarrow \ell \ell \ell$	
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	Undetectable	
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10-10	10-7
SM + heavy Maj $v_{\rm R}$	Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008	10-9	10-10
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10-9	10-8
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10-9

- But the sensitivity of particular modes to CLFV couplings is model dependent
- Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

1.2 Tau LFV

48 LFV modes studied at Belle and BaBar

1.2 Tau LFV

Expected sensitivity 10⁻⁹ or better at *LHCb, ATLAS, CMS, Belle II, HL-LHC?* **Emilie Passemar**

Emil

Belle II physics prospect – tau LFV

LFV is suppressed in SM \rightarrow a few models predict enhancements within Belle II's reach.

Emil

Belle II physics prospect – tau LFV

LFV is suppressed in SM \rightarrow a few models predict enhancements within Belle II's reach.

Emil

Slide from Talk by *Jian Wang* On Tuesday

τ->3μ @ HL-LHC

MC simulation study

Projected to 3000 fb⁻¹

Adding ME0 detector gains 15% sensitivity

Signal and background yields in [1.55, 2.00] GeV, assuming $Br(\tau -> 3\mu) = 2x 10^{-8}$

	Category 1	Category 2
Number of background events	$2.4 imes10^6$	$2.6 imes 10^{6}$
Number of signal events	4580	3640
Trimuon mass resolution	18 MeV	31 MeV
$B(\tau \rightarrow 3\mu)$ limit per event category	$4.3 imes 10^{-9}$	$7.0 imes 10^{-9}$
$B(\tau \rightarrow 3\mu)$ 90%C.L. limit	$3.7 \times$	10^{-9}

Note: ME0 reconstruction software was not yet optimised at the time of this study

e.g.

• Build all D>5 LFV operators:

> Dipole:

$$\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

• Build all D>5 LFV operators:

$$\succ \text{ Dipole: } \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

• Build all D>5 LFV operators:

$$\succ \text{ Dipole: } \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

- Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):
- See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

Integrating out heavy quarks generates gluonic operator

• Build all D>5 LFV operators:

$$\succ \text{ Dipole: } \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

- Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):
- $\mathcal{L}_{eff}^{S} \supset -\frac{\mathcal{C}_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$
- > 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector): \mathcal{L}_{e}

$$C_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \ \Gamma P_{L,R} \tau \ \overline{\mu} \ \Gamma P_{L,R} \mu$$

See e.g.

Black, Han, He, Sher'02

Matsuzaki & Sanda'08

Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

Crivellin, Najjari, Rosiek'13

Brignole & Rossi'04 Dassinger et al.'07

Giffels et al.'08

$$\Gamma \equiv 1 \ , \gamma^{\mu}$$

• Build all D>5 LFV operators:

$$\succ \text{ Dipole: } \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

 $\Gamma \equiv 1, \gamma^{\mu}$

$$\succ \text{ Lepton-gluon (Scalar, Pseudo-scalar): } \mathcal{L}_{eff}^G \supset -\frac{C_G}{\Lambda^2} m_{\tau} G_F \overline{\mu} P_{L,R} \tau \ G_{\mu\nu}^a G_A^{\mu\nu}$$

➤ 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \ \Gamma P_{L,R} \tau \ \overline{\mu} \ \Gamma P_{L,R} \mu$$

See e.g.

Black, Han, He, Sher'02

Matsuzaki & Sanda'08

Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

Crivellin, Najjari, Rosiek'13

Brignole & Rossi'04 Dassinger et al.'07

Giffels et al.'08

• Each UV model generates a *specific pattern* of them

1.4 Model discriminating power of Tau processes

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	1	—	—	_	_	_
OD	<pre>/</pre>	1	\checkmark	1	_	_
O_V^q	\smile	_	✓ (I=1)	$\checkmark(\mathrm{I=0,1})$	_	—
$O_{\mathbf{S}}^{\mathbf{q}}$	—	—	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	—	—
O _{GG}	—	—	\checkmark	\checkmark	—	_
$O^{\mathbf{q}}_{\mathbf{A}}$	—	—	—	—	✓ (I=1)	✓ (I=0)
O_P^q	—	—	—	—	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	1

- In addition to leptonic and radiative decays, *hadronic decays* are very important sensitive to large number of operators!
- But need reliable determinations of the hadronic part: form factors and *decay constants* (e.g. f_n, f_n['])

1.4 Model discriminating power of Tau processes

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	✓	_	—	_	_	_
OD	✓	✓	\checkmark	\checkmark	_	—
O_V^q	—	_	✓ (I=1)	$\checkmark(\mathrm{I=0,1})$	_	—
O_S^q	—	—	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	_	—
O _{GG}	—	—	1	\checkmark	_	—
O_A^q	—	—	—	_	✓ (I=1)	✓ (I=0)
O_P^q	—	—	—	—	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	1

with

- Form factors for $\tau \rightarrow \mu(e)\pi\pi$ determined using *dispersive techniques*
- Hadronic part:

Donoghue, Gasser, Leutwyler'90

$$H_{\mu} = \left\langle \pi \pi \right| \left(V_{\mu} - A_{\mu} \right) e^{iL_{QCD}} \left| 0 \right\rangle = \left(\text{Lorentz struct.} \right)_{\mu}^{i} \frac{F_{i}(s)}{F_{i}(s)} \quad s = \left(p_{\pi^{+}} + p_{\pi^{-}} \right)$$

Moussallam'99 Daub et al'13 Celis, Cirigliano, E.P.'14

• 2-channel unitarity condition is solved with I=0 S-wave $\pi\pi$ and KK scattering data as input Emilie Passemar $n = \pi\pi, K\overline{K}$

$$Im F_n(s) = \sum_{m=1}^{2} T^*_{nm}(s) \sigma_m(s) F_m(s)$$
23

1.4 Model discriminating power of Tau processes

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$ au o \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	\checkmark	_	—	—	_	—
OD	✓	1	\checkmark	✓	_	_
$O^{\mathbf{q}}_{\mathbf{V}}$	_	_	✓ (I=1)	$\checkmark(\mathrm{I=}0{,}1)$	_	_
O_S^q	_	_	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	_	_
O_{GG}	_	_	\checkmark	\checkmark	_	_
O_A^q	_	_	—	_	✓ (I=1)	✓ (I=0)
O_P^q	—	—	—	_	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	—	—	—	—	—	✓

- The notion of "*best probe*" (process with largest decay rate) is *model dependent*
- If observed, compare rate of processes key handle on *relative strength* between operators and hence on the *underlying mechanism*
- It would be good to be able to constrain $\tau \rightarrow \mu \pi \pi$ at HL-LHC!

1.5 Handles

- Two handles:
 - Branching ratios:

model M

> Spectra for > 2 bodies in the final state:

 $R_{F,M} \equiv \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_M)}$

$$\frac{dBR(\tau \to \mu\mu\mu)}{d\sqrt{s}}$$

with F_M dominant LFV mode for

- Benchmarks:
 - ➤ Dipole model: $C_D \neq 0$, $C_{else} = 0$
 - > Scalar model: $C_S \neq 0$, $C_{else} = 0$
 - ➢ Vector (gamma,Z) model: $C_V ≠ 0$, $C_{else} = 0$
 - ➢ Gluonic model: $C_{GG} ≠ 0$, $C_{else} = 0$

1.6 Model discriminating of BRs

Celis, Cirigliano, E.P.'14

• Two handles:

Branching ratios:

$$\mathbb{E}\left[R_{F,M} \equiv \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_{M})}\right]$$

with F_{M} dominant LFV mode for model M

		$\mu\pi^+\pi^-$	μho	μf_0	3μ	$\mu\gamma$
D	$R_{F,D}$	$0.26 imes 10^{-2}$	$0.22 imes 10^{-2}$	$0.13 imes10^{-3}$	$0.22 imes 10^{-2}$	1
D	BR	$< 1.1 \times 10^{-10}$	$<9.7\times10^{-11}$	$< 5.7 \times 10^{-12}$	$<9.7\times10^{-11}$	$< 4.4 \times 10^{-8}$
g	$R_{F,S}$	1	0.28	0.7	-	-
0	BR	$<~2.1\times10^{-8}$	$<~5.9\times10^{-9}$	$<~1.47\times10^{-8}$	-	-
$V(\gamma)$	$R_{F,V^{(\gamma)}}$	1	0.86	0.1	-	-
•	BR	$<~1.4\times10^{-8}$	$<~1.2\times10^{-8}$	$<~1.4\times10^{-9}$	-	-
Z	$R_{F,Z}$	1	0.86	0.1	-	-
2	BR	$<~1.4\times10^{-8}$	$<~1.2\times10^{-8}$	$<~1.4\times10^{-9}$	-	-
G	$R_{F,G}$	1	0.41	0.41	-	-
	\mathbf{BR}	$<~2.1\times10^{-8}$	$< 8.6 imes 10^{-9}$	$<~8.6\times10^{-9}$	-	-

Benchmark

Dassinger, Feldman, Mannel, Turczyk' 07 Celis, Cirigliano, E.P.'14

Figure 3: Dalitz plot for $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ decays when all operators are assumed to vanish with the exception of $C_{DL,DR} = 1$ (left) and $C_{SLL,SRR} = 1$ (right), taking $\Lambda = 1$ TeV in both cases. Colors denote the density for $d^2BR/(dm_{\mu^-\mu^+}^2 dm_{\mu^-\mu^-}^2)$, small values being represented by darker colors and large values in lighter ones. Here $m_{\mu^-\mu^+}^2$ represents m_{12}^2 or m_{23}^2 , defined in Sec. 3.1.

Angular analysis with polarized taus

Dassinger, Feldman, Mannel, Turczyk' 07

Figure 4: Dalitz plot for $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ decays when all operators are assumed to vanish with the exception of $C_{VRL,VLR} = 1$ (left) and $C_{VLL,VRR} = 1$ (right), taking $\Lambda = 1$ TeV in both cases. Colors are defined as in Fig. 3.

1.7 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays

Celis, Cirigliano, E.P.'14

1.7 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays

2. Lepton Universality tests with τ physics

Emilie Passemar

ח

32

• What about the third family? 1.0010 ± 0.0025

Emilie Passemar

מ

0.00(1.0.010)

2.2 Test of τ/e universality

- Universality tested at 0.15% level and ~2σ except for
 - W decay old anomaly
 - B decays See talks on Tuesday morning

2.3 Test of τ/μ universality

2.4 Lepton Flavour Universality anomaly $W \rightarrow \tau v_{\tau}$

• Old LEP anomaly

2.4 Lepton Flavour Universality anomaly $W \rightarrow \tau v_{\tau}$

Old LEP anomaly

$$R_{\tau\ell}^W = \frac{2 \operatorname{BR} \left(W \to \tau \,\overline{\nu}_{\tau} \right)}{\operatorname{BR} \left(W \to e \,\overline{\nu}_e \right) + \operatorname{BR} \left(W \to \mu \,\overline{\nu}_{\mu} \right)} = 1.077(26)$$

- 2.8σ away from <mark>\$</mark>M!
- New physics? Some models: *Li & Ma'05, Park'06, Dermisek'08*

Try to explain with SM EFT approach with [U(2)xU(1)]⁵ flavour symmetry Very difficult to explain without modifying any other observables *Filipuzzi, Portoles, Gonzalez-Alonso'12*

Would be great to have another measurement by LHC

3. B physics anomalies & Charged Lepton-Flavour Violation

3.1 B physics anomali

Emilie Passemar

I) LFU test in b \rightarrow c charged currents: τ v

3.2 Key role of τ physics observables

Isidori@CKM '18

• If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables involving $\boldsymbol{\tau}$

3.2 Key role of τ physics observables

Isidori@CKM '18

- If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables involving $\boldsymbol{\tau}$
- Large $\tau \to \mu$ LFV transitions in many realistic set-up

Glashow, Guadagnoli, Lane '15

• PS³ model:

 $[PS]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3$

At high energies the 3 families are charged under 3 independent gauge groups

- Light LQ coupled mainly to 3rd gen.
- Accidental U(2)5 flavor symmetry
- Natural structure of SM Yukawa couplings
- Possibility to constrain $\tau \to 3 \mu$ and $B_S \to \tau \mu$ at HL LHC?

3.2 Key role of τ physics observables

• Important constraints from $pp \rightarrow \tau \tau$

Isidori@CKM '18

• Constraints from $pp \rightarrow \tau \mu$

3.3 Lepton Flavour Violating h and Z decays

• HL-LHC can improve the bounds on LFV Z decays Br($Z \rightarrow \tau \mu$) < 1.2 x 10⁻⁵ *DELPHI@LEP'97*

Br(Z→τμ) < 1.3 x 10⁻⁵ ATLAS'18, 8+13 TeV

 $Br(Z \rightarrow \tau e) < 1.0 \times 10^{-5}$ OPAL@LEP'95

Br(Z→τe) < 5.8 x 10⁻⁵

ATLAS'18, 13 TeV

3.3 Lepton Flavour Violating h and Z decays

• HL-LHC can improve the bounds on LFV Higgs decays

Br(h→τe) < 0.61% Br(h→τμ) < 0.25%

Previous excess in $h \rightarrow \tau \mu$ not confirmed with new data

> See Talk by Jian Wang On Tuesday

4. Conclusion and outlook

Conclusion and outlook

- HL-LHC will produce many more taus than any other running machines but measurements in Tau physics very difficult
- Tau physics dominated by e⁺e⁻ machine measurements: CLEO, LEP, BaBar, Belle, BES and more to come with Belle II
- What can be done at HL-LHC for taus:
 - LFV: $\tau \rightarrow 3\mu$, What about $\tau \rightarrow \mu \phi$ and $\tau \rightarrow \mu(e)\pi\pi$?
 - LFV: $Z \rightarrow \tau \mu/e$, $h \rightarrow \tau \mu/e$
 - Lepton Universality: W decay old anomaly?
 - What about hadronic tau decays?
- Correlations with UV models explaining the B physics anomalies
- Very rich phenomenology: new ideas are welcome!

5. Back-up

2.8 Non standard LFV Higgs coupling

•
$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} (\overline{f}_{L}^{i} f_{R}^{j} H) H^{\dagger} H$$

• High energy : LHC

 $-Y_{ij}\left(\overline{f}_{L}^{i}f_{R}^{j}\right)h$

Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnik, Kopp, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12

Hadronic part treated with perturbative QCD

2.8 Non standard LFV Higgs coupling

Constraints in the $\tau\mu$ sector

Constraints in the $\tau\mu$ sector

- Constraints from LE:
 - > $\tau \rightarrow \mu \gamma$: best constraints but loop level > sensitive to UV completion of the theory
 - > $\tau \rightarrow \mu \pi \pi$: tree level diagrams robust handle on LFV
- Constraints from HE: *LHC* wins for $\tau \mu!$
- Opposite situation for $\mu e!$
- For LFV Higgs and nothing else: LHC bound

Hint of New Physics in $h \rightarrow \tau \mu$?

Hint of New Physics in $h \rightarrow \tau \mu$?

• Studies in specific models

Buras et al.'10

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\boxed{\frac{\operatorname{Br}(\mu^- \to e^- e^+ e^-)}{\operatorname{Br}(\mu \to e\gamma)}}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	0.062.2
$\frac{\operatorname{Br}(\tau \to e^- e^+ e^-)}{\operatorname{Br}(\tau \to e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.07 \dots 2.2$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.4	$\sim 2 \cdot 10^{-3}$	$0.06 \dots 0.1$	0.062.2
$\frac{\mathrm{Br}(\tau \to e^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	$0.02 \dots 0.04$	$0.03 \dots 1.3$
$\frac{\mathrm{Br}(\tau^- \to \mu^- e^+ e^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	0.041.4
$\frac{\operatorname{Br}(\tau^- \to e^- e^+ e^-)}{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}$	$0.8.\dots 2$	~ 5	$0.3. \ldots 0.5$	$1.5 \dots 2.3$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$
$\frac{\mathbf{R}(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{\mathbf{Br}(\mu \rightarrow e \gamma)}$	$10^{-3} \dots 10^2$	$\sim 5\cdot 10^{-3}$	$0.08 \dots 0.15$	$10^{-12} \dots 26$

3.2 $V_{\mu\nu}$ determination

3.2 V_{us} determination

- Longstanding inconsistencies between inclusive τ and kaon decays in extraction of V_{us}
- Inclusive τ decays:

$$\delta R_{\tau} \equiv \frac{R_{\tau,NS}}{\left|V_{ud}\right|^2} - \frac{R_{\tau,S}}{\left|V_{us}\right|^2}$$

SU(3) breaking quantity, strong dependence in m_s computed from OPE (L+T) + phenomenology

 $\delta R_{\tau,th} = 0.0242(32)$

Gamiz et al'07, Maltman'11

 CP violation in the tau decays should be of opposite sign compared to the one in D decays in the SM Grossman & Nir'11

$$A_{D} = \frac{\Gamma\left(D^{+} \to \pi^{+}K_{S}^{0}\right) - \Gamma\left(D^{-} \to \pi^{-}K_{S}^{0}\right)}{\Gamma\left(D^{+} \to \pi^{+}K_{S}^{0}\right) + \Gamma\left(D^{-} \to \pi^{-}K_{S}^{0}\right)} = \left(-0.54 \pm 0.14\right)\% \quad \begin{array}{c} \text{Belle, Babar,} \\ \text{CLEO, FOCUS} \end{array}$$

3.3 $\tau \rightarrow K\pi V_{\tau}$ CP violating asymmetry

• New physics? Charged Higgs, W_L-W_R mixings, leptoquarks, tensor interactions (*Devi, Dhargyal, Sinha'14, Cirigliano, Crivellin, Hoferichter'17*)?

 Need to investigate how large can be the prediction in realistic new physics models: it looks like a tensor interaction can explain the effect but in conflict with bounds from neutron EDM and DD mixing

Cirigliano, Crivellin, Hoferichter'17

3.5 Results

Emilie Passemar

Belle'08'11'12 except last from CLEO'97

3.5 What if $\tau \rightarrow \mu(e)\pi\pi$ observed? Reinterpreting Celis, Cirigliano, E.P'14

Talk by J. Zupan @ KEK-FF2014FALL

- $\tau \rightarrow \mu(e)\pi\pi$ sensitive to $Y_{\mu\tau}$ but also to $Y_{u,d,s}!$
- $Y_{u,d,s}$ poorly bounded

- For $Y_{u,d,s}$ at their SM values : $\begin{bmatrix} Br(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}, Br(\tau \to \mu \pi^0 \pi^0) < 4.6 \times 10^{-12} \\ Br(\tau \to e \pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e \pi^0 \pi^0) < 6.9 \times 10^{-11} \end{bmatrix}$
- But for $Y_{u,d,s}$ at their upper bound:

$$Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8}$$
$$Br(\tau \to e\pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e\pi^0 \pi^0) < 2.1 \times 10^{-7}$$

If discovered among other things upper limit on Y_{u,d,s}!
 Interplay between high-energy and low-energy constraints!

Celis, Cirigliano, E.P.'14

Determination of F_V(s)

Vector form factor

Precisely known from experimental measurements

$$e^+e^- \rightarrow \pi^+\pi^-$$
 and $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$ (isospin rotation)

> Theoretically: Dispersive parametrization for $F_V(s)$

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{V}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}'' - \lambda_{V}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{\left(s' + s - i\varepsilon\right)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$

Determination of $F_V(s)$

Determination of $F_V(s)$ thanks to precise measurements from Belle!

3.1 Constraints from $\tau \rightarrow \mu \pi \pi$

Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

- No experimental data for the other FFs → Coupled channel analysis up to √s~1.4 GeV Donoghue, Gasser, Leutwyler'90 Inputs: I=0, S-wave ππ and KK data Moussallam'99 Daub et al'13
- Unitarity:

Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

Celis, Cirigliano, E.P.'14

• Inputs : $\pi\pi \rightarrow \pi\pi$, KK

- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Buttiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \Longrightarrow *reconstruct T matrix* Emilie Passemar

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

• General solution:

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^\infty \frac{ds'}{s'-s} \operatorname{Im} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• Fix the polynomial with requiring $F_P(s) \rightarrow 1/s$ (Brodsky & Lepage) + ChPT: Feynman-Hellmann theorem: $\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d}\right) M_P^2$

$$\Delta_P(0) = \left(m_s \frac{\partial}{\partial m_s}\right) M_P^2$$

• At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

$$P_{\Gamma}(s) = \Gamma_{\pi}(0) = M_{\pi}^{2} + \cdots$$

$$Q_{\Gamma}(s) = \frac{2}{\sqrt{3}}\Gamma_{K}(0) = \frac{1}{\sqrt{3}}M_{\pi}^{2} + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$Q_{\Delta}(s) = \frac{2}{\sqrt{3}}\Delta_{K}(0) = \frac{2}{\sqrt{3}}\left(M_{K}^{2} - \frac{1}{2}M_{\pi}^{2}\right) + \cdots$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• At LO in ChPT:

$$M_{\pi^{+}}^{2} = (m_{u} + m_{d}) B_{0} + O(m^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K$$

Problem: large corrections in the case of the kaons!
 Use lattice QCD to determine the SU(3) LECs

 $\Gamma_K(0) = (0.5 \pm 0.1) \ M_\pi^2$ $\Delta_K(0) = 1^{+0.15}_{-0.05} \left(M_K^2 - 1/2M_\pi^2 \right)$

Dreiner, Hanart, Kubis, Meissner'13 Bernard, Descotes-Genon, Toucas'12

Determination of the polynomial

• General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• For θ_P enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states

Relax the constraints and match to ChPT

$$\begin{aligned} P_{\theta}(s) &= 2M_{\pi}^{2} + \left(\dot{\theta}_{\pi} - 2M_{\pi}^{2}\dot{C}_{1} - \frac{4M_{K}^{2}}{\sqrt{3}}\dot{D}_{1}\right)s\\ Q_{\theta}(s) &= \frac{4}{\sqrt{3}}M_{K}^{2} + \frac{2}{\sqrt{3}}\left(\dot{\theta}_{K} - \sqrt{3}M_{\pi}^{2}\dot{C}_{2} - 2M_{K}^{2}\dot{D}_{2}\right)s\end{aligned}$$

Emilie Passemar

3.5

- Universality tested at 0.15% level and good agreement except for
 - W decay old anomaly
 - B decays

2.2 Paths to V_{ud} and V_{us}

• From kaon, pion, baryon and nuclear decays

W

 \overline{u}

• From τ decays (crossed channel)

V_{ud}	$\tau \rightarrow \pi \pi v_{\tau}$	$\tau \rightarrow \pi v_{\tau}$	$\tau \rightarrow h_{NS} v_{\tau}$
V _{us}	$\tau \rightarrow K \pi v_{\tau}$	$\tau ightarrow m Kv_{ au}$	$\tau \rightarrow h_s \nu_{\tau}$ (inclusive)

2.2 Paths to V_{ud} and V_{us}

• From kaon, pion, baryon and nuclear decays

W

 \overline{u}

• From τ decays (crossed channel)

V_{ud}	$\tau \rightarrow \pi \pi v_{\tau}$	$\tau \rightarrow \tau$	$\tau v_{\tau} \left[\tau \rightarrow h_{NS} v_{\tau} \right]$
V _{us}	$\tau \rightarrow K \pi v_{\tau}$	$\tau \rightarrow t$	

$d_{\theta} = V_{ud}d + V_{us}s$ 2.3 V_{iis} from inclusive measurement Hadrons Tau, the only lepton heavy enough to decay into hadrons $V_1(s) = 2\pi \operatorname{Im} \prod_{ud,V}^{(0+1)}(s)$ $m_{\tau} \sim 1.77 \text{GeV} > \Lambda_{OCD}$ • use perturbative tools: OPE... Inclusive τ decays: $\tau \rightarrow (ud, us) v_{\tau}^{(0+1)}(S)$ fund. SM parameters $(\alpha_s(m_{\tau}), |V_{us}|, m_s)$ Davier et al'13 We consider $\Gamma(\tau^- \rightarrow v_{\tau} + \text{hadrons}_{s=0})$ (v₁+a₁)(s) ALEPH 3 Perturbative QCD (massless) $\Gamma(\tau^- \rightarrow v_{\tau} + \text{hadrons}_{S \neq 0})$ 2.5 Parton model prediction 2 ALEPH and OPAL at LEP measured with precision not only the total BRs but also 1.5 the energy distribution of the hadronic system in huge QCD activity!

0.5

0

0.5

1.5

2.5

3

s (GeV²)

• Observable studied:

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)}$$

3.5

2.4 Theory

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

parton model prediction

$$= \frac{\Gamma(\tau \xrightarrow{R}_{v_{\tau}} = R_{hadrons}^{NS} + R_{s}^{S})}{\Gamma(\tau \xrightarrow{v_{\tau}} + hadrons)} \approx |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}$$

= $\frac{|V_{us}|^{2}}{\Gamma(\tau \xrightarrow{v_{\tau}} e^{-v_{e}})} \approx N_{c}$
= $R_{\tau}^{S = 0} \frac{|V_{us}|^{2}}{|V_{ud}^{+}|} R_{\tau}^{S \xrightarrow{v_{\tau}} 0} \frac{R_{\tau}^{S}}{R_{\tau}^{NS}}}{|V_{ud}^{-}|} N_{c} |V_{us}|^{2} \approx 2.85 + 0.15$

 $d_{\theta} = V_{ud}d + V_{us}s$

Figure from M. González Alonso'13

 $\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R_{\tau}^{S\neq0}}{R_{\tau}^{S=0}}$

$$\left|V_{us}\right|^2$$

2.4 Theory

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

$$= \frac{\Gamma\left(\tau \xrightarrow{R} v_{\tau} = R_{hadrons}^{NS} + R_{r}^{S} \approx\right) |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{c}$$

= $R_{\tau}^{S=0} = R_{\tau}^{S=0} = N_{c}^{C} N_{c}^{C} |V_{ud}|^{2} = N_{c}^{2} = \frac{1 - B_{e} - B_{\mu}}{N_{c} |B_{\mu s}|} \approx 2.852 + 0.150086$

 $V_{\tau} \ d_{\theta} = V_{ud} d + V_{us} s$

 τ^{-}

Hadrons

Hadrons

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R_{\tau}^{S\neq0}}{R_{\tau}^{S=0}}$$

$$\left|V_{us}\right|^2$$

 α_{s}

$$\sum_{c}^{S=0} \approx N_C \left| V_{ud} \right|^2 + O(\alpha_s)$$

Emilie Passemar

81

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

$$V_c$$
 parton model prediction

 α_{s}

τ

$$= \frac{\Gamma\left(\tau \xrightarrow{R} v_{\tau} = R_{hadrons}^{NS} + R_{ud}^{S} \approx\right) |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{c}$$

= $R_{\tau}^{S=E \times pasimentally: V_{ud}} R_{\tau}^{2} = \frac{1 - B_{e} - B_{\mu}}{N_{c} |V_{ud}|^{2}} \approx 2.85 \pm 0.13086$

• Due to QCD corrections:
$$R_{\tau} = |V_{ud}|^2 N_c + |V_{us}|^2 N_c + O(\alpha_s)$$

 $\frac{|V_{us}|^2}{|V_{ud}|^2} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}} |V_{us}|^2$

$$\sum_{k}^{S=0} \approx N_C \left| V_{ud} \right|^2 + O(\alpha_s)$$

2.4 Theory

- $\tau \quad v_{\tau} \quad d_{\theta} = V_{ud} d + V_{us} s$ Hadrons $W \quad \theta = V_{ud} d + V_{us} s$ Hadrons $U \quad \theta = V_{ud} d + V_{us} s$
- From the measurement of the spectral functions, extraction of $\alpha_S, \, |V_{us}|$

$$\frac{1}{r_{\tau}} = \frac{\Gamma(\tau \rightarrow v_{\tau} + hadrons)}{\Gamma(\tau \rightarrow v_{\tau} + hadrons)v_{\tau}e^{-}v_{e}} \approx N_{c} \text{ naïve QCD prediction}$$

$$\frac{1}{r_{\tau}} = \frac{\Gamma(\tau \rightarrow v_{\tau} + hadrons)v_{\tau}e^{-}v_{e}}{\Gamma(\tau \rightarrow v_{\tau} + hadrons)v_{\tau}e^{-}v_{e}} \approx N_{c} \text{ naïve QCD prediction}$$

$$\frac{1}{r_{\tau}} = \frac{R_{\tau}^{S} = \text{Extraction of the strong coupling constant.}}{R_{\tau}^{NS} = |V_{ud}|^{2}} + N_{c} |V_{us}| \approx 2.85 \pm 0.15$$

$$\frac{|V_{us}|^{2}}{|V_{ud}|^{2}} \approx \frac{R_{\tau}^{S \neq 0}}{|R_{\tau}^{S \neq 0}|} \text{ calculated}$$

$$\frac{|V_{us}|^{2}}{|V_{ud}|^{2}} \approx \frac{R_{\tau}^{S \neq 0}}{|R_{\tau}^{S \neq 0}|} \text{ measured } V_{us} : \frac{|V_{us}|^{2}}{|V_{ud}|^{2}} = \frac{R_{\tau}^{S}}{R_{\tau}^{NS}} + O(\alpha_{s})^{2}$$

QCD switch ON 0FF (α_s≠0)

 $S=0 \approx Ma_{ud}^{2}$ if figult (compute the QCD corrections with the best accuracyEmilie Passemar

2.5 Calculation of the QCD corrections

• Calculation of R_{τ} :

Cauchy Theorem

$$R_{\tau}(m_{\tau}^2) = 12\pi S_{EW} \int_{0}^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$

$$\Gamma_{\tau \to v_{\tau} + \text{had}} \sim \text{Im} \left\{ \begin{matrix} \tau & \mathbf{d}, \mathbf{s} & \tau \\ W & W & V_{\tau} \\ V_{\tau} & \mathbf{u} & V_{\tau} \end{matrix} \right\}$$

Braaten, Narison, Pich'92

• Analyticity: Π is analytic in the entire complex plane except for s real positive

$$R_{\tau}(m_{\tau}^{2}) = 6i\pi S_{EW} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \Pi^{(1)}(s) + \Pi^{(0)}(s) \right]$$

• We are now at sufficient energy to use OPE:

µ: separation scale between short and long distances

2.5 Calculation of the QCD corrections

Braaten, Narison, Pich'92

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0): $\delta_p = a_{\tau} + 5.20 a_{\tau}^2 + 26 a_{\tau}^3 + 127 a_{\tau}^4 + \dots \approx 20\%$ $a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}$ Baikov, Chetyrkin, Kühn'08
- D=2: quark mass corrections, *neglected* for R_{τ}^{NS} ($\propto m_u, m_d$) but not for R_{τ}^{S} ($\propto m_s$)
- D ≥ 4: Non perturbative part, not known, *fitted from the data* Use of weighted distributions

2.5 Calculation of the QCD corrections

Le Diberder&Pich'92

Exploit shape of the spectral functions to obtain additional experimental information

$$R_{\tau,U}^{k\ell}(s_0) = \int_0^{s_0} ds \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{s_0}\right)^\ell \frac{dR_{\tau,U}(s_0)}{ds}$$

2.5 Inclusive determination of V_{us}

• With QCD on:

$$\frac{|V_{us}|^{2}}{|V_{ud}|^{2}} = \frac{R_{\tau}^{S}}{R_{\tau}^{NS}} + O(\alpha_{s})$$

$$\frac{|(\tau \rightarrow v_{\tau} + hadrons)}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{C}$$
• Use OPE:

$$R_{\tau}^{NS}(m_{\tau}^{2}) = N_{C} S_{EW} |V_{ud}|^{2} (1 + \delta_{p} + \delta_{NP}^{ud})$$

$$R_{\tau}^{S=0} + R_{\tau}^{S\neq0} \approx N_{C} |V_{ud}|^{2} + N_{C} |V_{us}| \approx 2.85 + 0.15$$

$$R_{\tau}^{S}(m_{\tau}^{2}) = N_{C} S_{EW} |V_{us}|^{2} (1 + \delta_{p} + \delta_{NP}^{us})$$

HFAG'17

 $R_{\tau,S} = 0.1633(28)$ $R_{\tau,NS} = 3.4718(84)$

 $|V_{ud}| = 0.97417(21)$

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{F}{F} \delta R_{\tau} \equiv \frac{R_{\tau,NS}}{\left|V_{ud}\right|^{2}} - \frac{R_{\tau,S}}{\left|V_{us}\right|^{2}} \quad \text{of} \quad \text{o$$

$$\sum_{\tau}^{S=0} \left[\left| V_{us} \right|^{2} = \frac{R_{\tau,S}}{\frac{R_{\tau,NS}}{\left| V_{ud} \right|^{2}} - \delta R_{\tau,th}} \right]$$

Emilie Passemar

J(3) breaking quantity, strong ependence in M_s computed from PE (L+T) + phenomenology

 $\delta R_{\tau,th} = 0.0242(32)$ Gamiz et al'07, Maltman'11

 $|V_{us}| = 0.2186 \pm 0.0019_{exp} \pm 0.0010_{th}$

3.10 away from unitarity!

2.6 V_{us} using info on Kaon decays and $\tau \rightarrow K\pi v_{\tau}$

2.6 V_{us} using info on Kaon decays and $\tau \rightarrow K\pi v_{\tau}$

Antonelli, Cirigliano, Lusiani, E.P. '13 K₁₃, PDG 2016 0.2237 ± 0.0010 K₁₂, PDG 2016 HOH 0.2254 ± 0.0007 CKM unitarity, PDG 2016 0.2258 ± 0.0009 $\tau \rightarrow s$ incl., Maltman 2017 $0.2229 \pm 0.0022 \pm 0.0004$ $\tau \rightarrow s$ incl., HFLAV 2016 0.2186 ± 0.0021 $\tau \rightarrow K\nu / \tau \rightarrow \pi\nu$, HFLAV 2016 0.2236 ± 0.0018 τ average, HFLAV 2016 0.2216 ± 0.0015 0.225

- - J. Zanotti'17
- Crucial input: $\tau \rightarrow K\pi v_{\tau} Br + spectrum$

 $= 0.2229 \pm 0.0022_{exp} \pm 0.0004_{theo}$

need new data

Very good prospect from Belle II, BES?

0.22

 $\mathsf{IV}_{\mathsf{us}}\mathsf{I}$

4.2 Outlook

- 45 billion $\tau^+\tau^-$ pairs in full dataset from $\sigma(\tau^+\tau^-)_{E=\Upsilon(4S)}=0.9$ nb @Belle II
- B2TiP initiative: define the first set of measurements to be performed at *Belle II*, https://confluence.desy.de/display/BI/B2TiP+WebHome
- Golden/Silver modes for the Tau, Low Multiplicity and EW working group

3.1 Introduction

- Tau, the only lepton heavy enough to decay into hadrons $V_1(s) = 2\pi \operatorname{Im} \prod_{ud,V}^{0+1}(s)$
- $m_{\tau} \sim 1.77 \text{GeV} > \Lambda_{QCD}$ \implies use *perturbative tools: OPE...*
- Inclusive T decays: $\tau \rightarrow (ud, us) v_{\tau}^{l} d \rightarrow fund.$ SM parameters $(\alpha_{s}(m_{\tau}), |V_{us}|, m_{s})$

• We consider
$$\Gamma(\tau^- \rightarrow v_{\tau} + hadrons_{S=0})$$

$$\Gamma(\tau^- \rightarrow \nu_{\tau} + \text{hadrons}_{S \neq 0})$$

- ALEPH and OPAL at LEP measured with precision not only the total BRs but also the energy distribution of the hadronic system huge QCD activity!
- Observable studied:

$$R_{\tau} \equiv \frac{\Gamma\left(\tau^{-} \to v_{\tau} + \text{hadrons}\right)}{\Gamma\left(\tau^{-} \to v_{\tau}e^{-}\overline{v_{e}}\right)}$$

 $d_{\theta} = V_{ud}d + V_{us}s$

Hadrons

Davier et al'13

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

parton model prediction

$$= \frac{\Gamma(\tau \xrightarrow{R} = R^{NS} + R^{S})}{\Gamma(\tau \xrightarrow{\tau} v_{\tau} + hadrons)} \approx |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}$$

= $\frac{V_{us}|^{2} N_{c}}{\Gamma(\tau \xrightarrow{\tau} v_{e} - v_{e})} \approx N_{c}$
= $R_{\tau}^{S} = \frac{|V_{us}|^{2} R^{S}}{|V_{ud}^{+}|} R_{\tau}^{S} R_{\tau}^{S} N_{c} |V_{ud}|^{2} N_{c} |V_{us}|^{2} \approx 2.85 + 0.15$

 $d_{\theta} = V_{ud}d + V_{us}s$

u

2 2 2

Hadrons

 $\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R_{\tau}^{S\neq0}}{R_{\tau}^{S=0}}$

$$\left|V_{us}\right|^2$$

Emilie Passemar

93

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

parton model prediction

 $\left|V_{us}\right|^2$

 α_{s}

$$= \frac{\Gamma\left(\tau \stackrel{R}{\rightarrow} v_{\tau} \stackrel{=}{+} \stackrel{R_{dad}^{NS}}{+} \stackrel{R_{dad}^{S}}{+} \stackrel{R_{dad}^{S}}{=} \right) |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{c}$$

$$= R_{\tau}^{S=0} \stackrel{\text{Experimentally:}}{+} R_{\tau}^{S} \stackrel{\text{event}}{=} N_{c}^{C} |V_{ud}|^{2} \stackrel{R_{\tau}}{=} \frac{1 - B_{e} - B_{\mu}}{N_{c} |B_{\mu s}|} \approx 2.862910 \pm 0.00866$$

QCD switch 0N 0FF (α_s≠0)

 $d_{\theta} = V_{ud}d + V_{us}s$

Hadrons

Hadrons

$$\frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2}} \approx \frac{R_{\tau}^{S\neq0}}{R_{\tau}^{S=0}}$$

$$=^{0} \approx N_{C} |V_{ud}|^{2} + O(\alpha_{s})$$

Emilie Passemar

S

•
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} \approx N_C$$

$$c$$
 parton model prediction

 α_{s}

$$= \frac{\Gamma\left(\tau \stackrel{R}{\longrightarrow} v_{\tau} \stackrel{R}{+} \stackrel{R}{hadrons} \stackrel{S}{\longrightarrow} |V_{ud}|^{2} N_{c} + |V_{us}|^{2} N_{c}}{\Gamma\left(\tau \rightarrow v_{\tau} e^{-} v_{e}\right)} \approx N_{c}$$

$$= R_{\tau}^{S=E} \stackrel{R}{\longrightarrow} R_{\tau}^{simpentally} \stackrel{V}{\longrightarrow} V_{c}^{R} \stackrel{R}{=} \stackrel{R}{=} \frac{1 - B_{e} - B_{\mu}}{N_{c} |P_{ud}|^{2}} = 2.852 + 0.15086$$

• Due to QCD corrections:
$$R_{\tau} = |V_{ud}|^2 N_c + |V_{us}|^2 N_c + O(\alpha_s)$$

 $\frac{|V_{us}|^2}{|V_{ud}|^2} \approx \frac{R_{\tau}^{S \neq 0}}{R_{\tau}^{S = 0}} |V_{us}|^2$

$$\sum_{k}^{S=0} \approx N_C \left| V_{ud} \right|^2 + O(\alpha_s)$$

- $\tau \quad v_{\tau} \quad d_{\theta} = V_{ud} d + V_{us} s$ Hadrons $W \quad v_{\tau} \quad d_{\theta} = V_{ud} d + V_{us} s$ Hadrons $U \quad v_{\tau} \quad u_{\theta} = V_{ud} d + V_{us} s$ Hadrons
- From the measurement of the spectral functions, extraction of α_S , $|V_{us}|$

$$\frac{\Gamma(\tau \rightarrow v_{\tau} + hadrons)}{\Gamma(\tau \rightarrow v_{\tau} + hadrons)} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} + hadrons)v_{\tau}e^{-}v_{e}}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} \approx N_{c}$$
 naïve QCD prediction

$$\frac{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})}{\Gamma(\tau \rightarrow v_{\tau} e^{-}v_{e})} =$$

QCD switch ON 0FF (α_s≠0)

 $S=0 \approx N_{C} = M_{ud} = M_{ud$

3.3 Calculation of the QCD corrections

• Calculation of R_{τ} :

Cauchy Theorem

$$R_{\tau}(m_{\tau}^2) = 12\pi S_{EW} \int_{0}^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$

$$\Gamma_{\tau \to v_{\tau} + \text{had}} \sim \text{Im} \left\{ \begin{matrix} \tau & \mathbf{d}, \mathbf{s} & \tau \\ W & W & V_{\tau} \\ V_{\tau} & \mathbf{u} & V_{\tau} \end{matrix} \right\}$$

Braaten, Narison, Pich'92

• Analyticity: Π is analytic in the entire complex plane except for s real positive

$$R_{\tau}(m_{\tau}^{2}) = 6i\pi S_{EW} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right)\Pi^{(1)}(s) + \Pi^{(0)}(s)\right]$$

• We are now at sufficient energy to use OPE:

µ: separation scale between short and long distances

3.3 Calculation of the QCD corrections

Braaten, Narison, Pich'92

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0): $\delta_p = a_{\tau} + 5.20 a_{\tau}^2 + 26 a_{\tau}^3 + 127 a_{\tau}^4 + \dots \approx 20\%$ $a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}$ Baikov, Chetyrkin, Kühn'08
- D=2: quark mass corrections, *neglected* for R_{τ}^{NS} ($\propto m_u, m_d$) but not for R_{τ}^{S} ($\propto m_s$)
- D ≥ 4: Non perturbative part, not known, *fitted from the data* Use of weighted distributions

3.3 Calculation of the QCD corrections

Le Diberder&Pich'92

Exploit shape of the spectral functions to obtain additional experimental information

$$R_{\tau,U}^{k\ell}(s_0) = \int_0^{s_0} ds \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{s_0}\right)^\ell \frac{dR_{\tau,U}(s_0)}{ds}$$

3.4 Extraction of α_s

- Several delicate points:
 - How to compute the perturbative part: CIPT vs. FOPT?
 - How to estimate the non perturbative contribution? Where do we truncate the expansion, what is the role of higher order condensates?
 - Which weights should we use?
 - What about duality violations?
 - A MITP topical workshop in Mainz: March 7-12, 2016 *Determination of the fundamental parameters of QCD* A session on Tuesday afternoon
- New data on spectral functions needed to help to answer some of these questions