Tau Physics at FCC-ee

15th International Workshop on Tau Lepton Physics, 24-28 Sep. 2018
The Future Circular Colliders

International collaboration to Study Colliders fitting in a new ~100 km infrastructure, in the Geneva region

- Ultimate goal:
 - 100 TeV pp-collider: FCC-hh
 - Defining infrastructure requirements

- Possible first step:
 - e⁺e⁻ collider: FCC-ee
 - High Lumi, $E_{\text{cm}} = 90-400$ GeV

CDR and cost review to appear Q4 2018 for European Strategy Update

Resources:
- First Look at the Physics Case of TLEP
- Physics at the FCC-hh, a 100 TeV pp collider
- 1st FCC Physics Workshop, Jan 2017
- 2nd FCC Physics Workshop, Jan 2018
Outline

a. FCC-ee
b. Lepton Flavour Violating Z decays
c. Lepton Universality
d. Lepton Flavour Violating τ decays
FCC-ee

Lepton beams must cross over through the common RF to enter the IP from inside. Only a half of each ring is filled with bunches.

Max. separation of 3(4) rings is about 12 m:

wider tunnel or two tunnels are necessary around the IPs, for ±1.2 km.
Luminosity & Statistics

Enormous statistics. Also for τ-leptons

<table>
<thead>
<tr>
<th>Process</th>
<th>E$_{CM}$ (GeV)</th>
<th>Luminosity (10^{34} cm$^{-2}$s$^{-1}$)</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z peak</td>
<td>91</td>
<td>5 x 1012</td>
<td>4</td>
</tr>
<tr>
<td>WW threshold</td>
<td>161</td>
<td>108</td>
<td>1</td>
</tr>
<tr>
<td>ZH threshold</td>
<td>240</td>
<td>106</td>
<td>3</td>
</tr>
<tr>
<td>tt threshold</td>
<td>350</td>
<td>106</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>E$_{CM}$ (GeV)</th>
<th>Luminosity (10^{34} cm$^{-2}$s$^{-1}$)</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z decays</td>
<td></td>
<td></td>
<td>5 x 1012</td>
</tr>
<tr>
<td>Z → τ$^+τ^-$</td>
<td></td>
<td></td>
<td>1.7 x 1011</td>
</tr>
<tr>
<td>1 vs. 3 prongs</td>
<td></td>
<td></td>
<td>4.2 x 1010</td>
</tr>
<tr>
<td>3 vs. 3 prong</td>
<td></td>
<td></td>
<td>3.6 x 109</td>
</tr>
<tr>
<td>1 vs. 5 prong</td>
<td></td>
<td></td>
<td>2.8 x 108</td>
</tr>
<tr>
<td>1 vs. 7 prong</td>
<td></td>
<td></td>
<td>< 87,000</td>
</tr>
<tr>
<td>1 vs. 9 prong</td>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
FCC-ee Detector Designs

- Baseline detector #1: CLD
 - The CLIC detector is being adapted for FCC-ee
 - Changeover mostly straightforward
 - Smaller beam pipe radius (15 mm)
 - Inner pixel layer closer to IP
 - Smaller B field
 - Larger tracker radius (1.5 \rightarrow 2.2 m)
 - Lower collision energies
 - Thinner HCAL (4.2 \rightarrow 3.7 m)
 - Continous operation (no power pulsing)
 - Increased cooling
 - Thicker pixel/tracker layers
 - Reduced calorimeter granularity

- Baseline detector #2: IDEA Concept
 - Main "peculiarities"
 - Extremely light drift chamber
 - Dual readout calorimeter
 - Coil inside calorimeters
A wealth of EW and Higgs Precision Measurements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_Z (MeV)</td>
<td>Lineshape</td>
<td>91187.5 ± 2.1</td>
<td>0.005</td>
<td>< 0.1</td>
<td>QED corr.</td>
</tr>
<tr>
<td>Γ_Z (MeV)</td>
<td>Lineshape</td>
<td>2495.2 ± 2.3</td>
<td>0.008</td>
<td>< 0.1</td>
<td>QED corr.</td>
</tr>
<tr>
<td>R_l</td>
<td>Peak</td>
<td>20.767 ± 0.025</td>
<td>0.00001</td>
<td>< 0.001</td>
<td>Statistics</td>
</tr>
<tr>
<td>R_b</td>
<td>Peak</td>
<td>0.21629 ± 0.00066</td>
<td>0.0000003</td>
<td>< 0.000006</td>
<td>g → bb</td>
</tr>
<tr>
<td>N_ν</td>
<td>Peak</td>
<td>2.984 ± 0.008</td>
<td>0.00004</td>
<td>< 0.004</td>
<td>Lumi meas</td>
</tr>
<tr>
<td>sin^2θ_W^{eff}</td>
<td>A_{FB}^{#mu} (peak)</td>
<td>0.23148 ± 0.00016</td>
<td>0.0000003</td>
<td>0.0000006</td>
<td>Beam energy</td>
</tr>
<tr>
<td>1/α_{QED}(m_Z)</td>
<td>A_{FB}^{#mu} (off-peak)</td>
<td>128.952 ± 0.014</td>
<td>0.004</td>
<td>< 0.004</td>
<td>QED corr.</td>
</tr>
<tr>
<td>α_s(m_Z)</td>
<td>R_l</td>
<td>0.1190 ± 0.0025</td>
<td>0.000001</td>
<td>0.0001</td>
<td>New Physics</td>
</tr>
<tr>
<td>m_w (MeV)</td>
<td>Threshold scan</td>
<td>80385 ± 15</td>
<td>0.3</td>
<td>< 0.5</td>
<td>EW Corr.</td>
</tr>
<tr>
<td>N_ν</td>
<td>e^+e^- → γ Z, Z → νν, ll</td>
<td>2.92 ± 0.05</td>
<td>0.001</td>
<td>< 0.001</td>
<td>?</td>
</tr>
<tr>
<td>α_s(m_w)</td>
<td>B_{had} = (Γ_{had}/Γ_{tot})_W</td>
<td>67.41 ± 0.27</td>
<td>0.000018</td>
<td>< 0.0001</td>
<td>CKM Matrix</td>
</tr>
<tr>
<td>m_top (MeV)</td>
<td>Threshold scan</td>
<td>173340 ± 760 ± 500</td>
<td>10</td>
<td>20</td>
<td>QCD corr.</td>
</tr>
<tr>
<td>Γ_top (MeV)</td>
<td>Threshold scan</td>
<td>?</td>
<td>25</td>
<td>?</td>
<td>α_s(m_Z)</td>
</tr>
<tr>
<td>λ_top</td>
<td>Threshold scan</td>
<td>μ = 1.2 ± 0.4</td>
<td>15%</td>
<td>?</td>
<td>α_s(m_Z)</td>
</tr>
</tbody>
</table>

And on top we can also do some tau physics

Coupling | HL-LHC | FCC-ee |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{HWW}</td>
<td>3.5%</td>
<td>0.47%</td>
</tr>
<tr>
<td>g_{HZZ}</td>
<td>3.5%</td>
<td>0.22%</td>
</tr>
<tr>
<td>g_{Hbb}</td>
<td>8.2%</td>
<td>0.68%</td>
</tr>
<tr>
<td>g_{Hcc}</td>
<td>SM</td>
<td>1.2%</td>
</tr>
<tr>
<td>g_{Htt}</td>
<td>6.5%</td>
<td>0.80%</td>
</tr>
<tr>
<td>g_{H#mu}</td>
<td>5.0%</td>
<td>8.6%</td>
</tr>
<tr>
<td>g_{H#gamma}</td>
<td>3.6%</td>
<td>3.8%</td>
</tr>
<tr>
<td>g_{Hgg}</td>
<td>3.9%</td>
<td>1.0%</td>
</tr>
<tr>
<td>g_{HZY}</td>
<td>~12%</td>
<td>?</td>
</tr>
<tr>
<td>BR_{EXOT}</td>
<td>SM</td>
<td>< 1.1%</td>
</tr>
<tr>
<td>Γ_H</td>
<td>~50%</td>
<td>1.6%</td>
</tr>
<tr>
<td>g_{Htt}</td>
<td>4.2%</td>
<td>10% (*)</td>
</tr>
<tr>
<td>g_{HHHH}</td>
<td>30-50%</td>
<td>40%(*)</td>
</tr>
</tbody>
</table>
LFV Z decays

\[\pi^- \rightarrow \mu^+ + \tau^- + \pi^- + \pi^0 + e^+ + \nu \]

Current limits:

- $\text{Br}(Z \rightarrow e\tau) < 9.8 \times 10^{-6}$
 LEP/OPAL
 (4 $\times 10^6$ Z decays)

- $\text{Br}(Z \rightarrow \mu\tau) < 12. \times 10^{-6}$
 LEP/DELPHI
 (4 $\times 10^6$ Z decays)

Method:

- Identify clear tau decay in one hemisphere
- Look for "beam-energy" lepton (electron or muon) in other hemisphere

Limitation: How to define “beam-energy” lepton

- Unavoidable background from $\tau \rightarrow e\nu\nu / \tau \rightarrow \mu\nu\nu$ with two (very) soft neutrinos
- How much background depends on energy/momentum resolution
- Example DELPHI

Figure:

- Diagram showing the distribution of $dN/d(p/E_{beam})$ for $Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$ processes in DELPHI experiment.

Caption:

- Z.Phys. C73
- $\tau \rightarrow \mu\nu\nu$
- μ from $Z \rightarrow \mu\mu$
Z → ℓτ - Study of Sensitivity

- Generate very upper part of μ momentum spectrum from τ → μνν decays
 - Luminosity equivalent to 5x10^{12} Z decays
- Inject LFV signal of adjustable strength
 - Here for illustration, Br(Z → τμ) = 10^{-7}, i.e. 500,000 e/μ
- Smear momentum by variable amounts, here 3x10^{-3}
- Define x > 1 as signal region
- Derive 95% confidence limit on excess in signal region
- Findings:
 - Sensitivity scales **linear** with momentum resolution
 - Detectors for FCC-ee (CLD and IDEA) have a momentum resolution at p=45.6 GeV of about 3x10^{-3}
 - Ten times better than for LEP detectors
 - Contribution from beam-energy spread (0.5 x 10^{-3}) is negligible
- Sensitivity for 5 x 10^{12} Z decays, δp/p = 3x10^{-3}, 25% signal and bkg efficiency (clear tau)
 - For Z→τμ, can probe BRs down to 10^{-9}
 - For Z→τe, similar sensitivity 10^{-9}
 - Momentum resolution of electrons tend to be slightly worse than muons due to bremsstrahlung.
 - However, downwards smearing is not a major concern.
Current limit:
- \(7.5 \times 10^{-7}\) LHC/ATLAS (20 fb\(^{-1}\); no candidates)
- \(1.7 \times 10^{-6}\) LEP/OPAL (4.0 \times 10^6 Z decays: no candidates)

Clean experimental signature:
- Beam energy electron vs. beam energy muon

Main experimental challenge:
- **Catastrophic bremsstrahlung energy loss** of muon in electromagnetic calorimeter
 - Muon would deposit (nearly) full energy in ECAL: Misidentification \(\mu \rightarrow e\)
 - NA62: Probability of muon to deposit more than 95% of energy in ECAL: \(4 \times 10^{-6}\)
 - Possible to reduce by
 - ECAL longitudinal segmentation: Require energy > mip in first few radiation lengths
 - Aggressive veto on HCAL energy deposit and muon chamber hits
 - If \(dE/dx\) measurement available, some independent \(e/\mu\) separation at 45.6 GeV
 - Could give handle to determine misidentification probability \(P(\mu \rightarrow e)\)
 - Notice: ATLAS uses transition radiation as part of electron ID.

FCC-\(ee\):
- Misidentification from catastrophic energy loss corresponds to limit of about \(\text{Br}(Z \rightarrow e\mu) \approx 10^{-7}\)
- Possibly do \(O(10)\) better than that

\(\text{Br}(Z \rightarrow e\mu) \sim 10^{-8}\)
Lepton Universality

In τ decays
a) mass
b) lifetime
c) leptonic branching fractions

In b decays

Lepton universality with $m_\tau = 1776.86 \pm 0.12$ MeV

Today (2018)

FCC-ee
Tau Mass (i)

- **Current world average:** $m_\tau = 1776.86 \pm 0.12 \text{ MeV}
- **Best in world:** BES3 (threshold scan) $m_\tau = 1776.91 \pm 0.12 \text{ (stat.) } +0.10_{-0.13} \text{ (syst.) MeV}
- **Best at LEP:** OPAL
 - About factor 10 from world’s best
 - Main result from endpoint of distribution of pseudo-mass in $\tau \rightarrow 3\pi^{\pm}(\pi^{0})\nu_\tau$
 - Dominant systematics:
 - Momentum scale: 0.9 MeV
 - Energy scale: 0.25 MeV
 - Dynamics of τ decay: 0.10 MeV
- **Same method from Belle**
 - Main systematics
 - Beam energy & tracking system calib.: 0.26 MeV
 - Parameterisation of the spectrum edge: 0.18 MeV

$$m_\tau = 1776.61 \pm 0.13 \text{ (stat.) } \pm 0.35 \text{ (syst.) MeV}$$

Pseudo-mass: $M_{\text{min}} = \sqrt{M_{3\pi}^2 + 2(E_{\text{beam}} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$

Phys. Lett. B492, 23

OPAL

Uncertainty: one third bin size

Belle

PRL 99, 011801 (2007)

Uncertainty: half bin size
Prospects for FCC-ee:

- 3 prong, 5 prongs, (perhaps even 7 prongs?)
- Statistics 10^5 times OPAL: $\delta_{\text{stat}} = 0.005 \text{ MeV}$
- Systematics:
 - At FCC-ee, E_{BEAM} known to better than 0.1 MeV (~ 1 ppm) from resonant depolarisation
 - Negligible effect on m_τ
 - Likely dominant experimental contribution comes from understanding of the mass scale
 - Use $D^0 \rightarrow K^- \pi^+ / K^- \pi^+ \pi^- \pi^-$ and $D^+ \rightarrow K^- \pi^+ \pi^+$ to fix mass scale (m_D known to 50 keV)
 - Use high stats $e^+e^- \rightarrow \mu^+\mu^-$ sample to fix momentum scale. Extrapolate down to momenta typical for $\tau \rightarrow 3\pi$.
 - Hope to reduce uncertainty from parametrisation of spectrum edge by use of theoretical spectrum checked against high statistics data
 - Cross checks using 5-prongs
- Suggested overall systematics: $\delta_{\text{syst}} = 0.120 \text{ MeV}$
 - Could potentially touch current precision but probably no substantial improvement
Current world average: \(\tau_{\tau} = 290.3 \pm 0.5 \text{ fs} \)

Best in world (Belle): \(\tau_{\tau} = 290.17 \pm 0.53_{\text{stat}} \pm 0.22_{\text{syst}} \text{ fs} \)
- Large statistics: 711 fb\(^{-1}\) @ \(\Upsilon(4s) \): \(6.3 \times 10^8 \tau^+\tau^- \) events
- Use 3 vs. 3 prong events; reconstruct 2 secondary vertices + primary vertex
- Measure flight distance \(\Rightarrow \) proper time
- Dominant systematics: Vertex detector alignment to \(\sim 0.25 \mu m \)
 - Vertex detector outside 15 mm beam pipe

Best at LEP (DELPHI): \(\tau_{\tau} = 290.0 \pm 1.4_{\text{stat}} \pm 1.0_{\text{syst}} \text{ fs} \)
- “Low” statistics: \(\sim 250,000 \tau^+\tau^- \) events
- Three methods:
 - Decay length (1v3 + 3v3), impact parameter difference (1v1), miss distance (1v1)
 - Lowest systematics from decay length (1v3)
 - Dominant systematics: Vertex detector alignment to 7.5 \(\mu m \)
 - Alignment with data (q\(\bar{q} \) events): statistics limited
 - Vertex detector: 7.5 \(\mu m \) point resolution at 63, 90, and 109 mm
Prospects at FCC-ee

- Small beam-pipe radius (15 mm): Vertex detector with 3 μm space points at 18, 38, 58 mm
 - [DELPHI: 63, 90, 109 mm]
- Impact parametre resolution ~5 times better than at LEP for relevant momenta
 - DELPHI: \(a = 20 \mu m, b = 65 \mu m \)
 - FCC-ee: \(a = 3 \mu m, b = 15 \mu m \)
 - Belle: \(a = 19 \mu m, b = 50 \mu m \)
- Assume same alignment uncertainty as Belle:
 - 0.25 μm, i.e. factor 30 improvement wrt DELPHI.
 - Possible systematics on flight distance method: 1.3/30 fs i.e.
 \[
 \delta_{syst} = 0.04 \text{ fs}
 \]

Further prospects: lifetime can be measured with different systematics in many modes

- 1v1: impact parameter difference, miss distance
- 1v3: flight distance
- 3v3 (4x10^9 events): flight distance sum
Tau Leptonic Branching Fractions

- **World average**
 - \(B(\tau \to e\nu\nu) = 17.82 \pm 0.05 \% \) ; \(B(\tau \to \mu\nu\nu) = 17.39 \pm 0.05 \% \)

- **Dominated by ALEPH**
 - \(B(\tau \to e\nu\nu) = 17.837 \pm 0.072_{\text{stat}} \pm 0.036_{\text{syst}} \% \) ; \(B(\tau \to \mu\nu\nu) = 17.319 \pm 0.070_{\text{stat}} \pm 0.032_{\text{syst}} \% \)

- **Three uncertainty contributions were dominant in the Aleph measurement**
 - Selection efficiency: \(0.021 / 0.020 \% \)
 - Non-\(\tau^+\tau^- \) background: \(0.029 / 0.020 \% \)
 - Particle ID: \(0019 / 0.021 \% \)
 - All of these are limited by statistics: size of test samples, etc.

- **Prospects at FCC-ee**
 - Enormous statistics:
 \[\delta_{\text{stat}} = 0.0001 \% \]
 - Systematic uncertainty is hard to (gu)estimate at this point.
 - Depends intimately on the detailed performance of the detector(s)
 - At the end of the day, between LEP experiments, \(\delta_{\text{syst}} \) varied by up to a factor 3
 - Lesson: Design your detector with care!
 Let me put here as a placeholder a suggested factor 10 improvement wrt ALEPH:
 \[\delta_{\text{syst}} = 0.003 \% \]
Summary of Precisions & Lepton Universality

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_τ [MeV]</td>
<td>Threshold / inv. mass endpoint</td>
<td>1776.86 ± 0.12</td>
<td>0.005</td>
<td>0.12</td>
<td>Mass scale</td>
</tr>
<tr>
<td>τ_τ [fs]</td>
<td>Flight distance</td>
<td>290.3 ± 0.5 fs</td>
<td>0.005</td>
<td>< 0.040</td>
<td>Vertex detector alignment</td>
</tr>
<tr>
<td>$B(\tau \to e\nu\nu)$ [%]</td>
<td>Selection of $\tau^+\tau^-$, identification of final state</td>
<td>17.82 ± 0.05</td>
<td>0.0001</td>
<td>No estimate; possibly 0.003</td>
<td>Efficiency, bkg, Particle ID</td>
</tr>
<tr>
<td>$B(\tau \to \mu\nu\nu)$ [%]</td>
<td></td>
<td>17.39 ± 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lepton Universality Tests:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Measurement</th>
<th>Current precision</th>
<th>FCC-ee precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>g_\mu/g_e</td>
<td>$</td>
<td>$\Gamma_{\tau\to\mu}/\Gamma_{\tau\to e}$</td>
</tr>
<tr>
<td>$</td>
<td>g_\tau/g_\mu</td>
<td>$</td>
<td>$\Gamma_{\tau\to e}/\Gamma_{\mu\to e}$</td>
</tr>
</tbody>
</table>

With the precise FCC-ee measurements of lifetime and BRs, m_τ could become the limiting measurement in the universality test.

$$\left(\frac{g_\tau}{g_\mu}\right)^2 \approx \frac{\tau_\mu}{\tau_\tau} \cdot \frac{\text{BF}(\tau^- \to e^-\nu_e\nu_\tau)}{\text{BF}(\tau^- \to \mu^-\nu_\mu\nu_\tau)} \left(\frac{m_\mu}{m_\tau}\right)^5$$

With $m_\tau = 1776.86 \pm 0.12$ MeV
Lepton flavour violations in b decays

- Current tensions (several 2-3 σ deviations) of Belle & LHCb data with SM predictions
 - In particular, lepton flavour universality is challenged in $b \rightarrow s\ell^+\ell^-$ transitions
 - For example, the rates of $B^0(B^+) \rightarrow K^{*0}(K^+)\ell^+\ell^-$ are different for $\ell = e$ and $\ell = \mu$
 - Differences are also observed in the lepton angular distributions
 - This effect, if real, could be enhanced for $\ell = \tau$, in $B \rightarrow K^{(*)}\tau^+\tau^-$
 - Extremely challenging in hadron colliders
 - With $10^{12} Z \rightarrow bb$, FCC-ee is beyond any foreseeable competition
 - Decay can be fully reconstructed
 - Full angular analysis possible
 - Also sensitive to new physics in $B_s \rightarrow \mu^+\mu^-$
 - None found so far at the LHC (~ 50 events)

\[
BR(B_S^0 \rightarrow \mu^+\mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \sim SM
\]

- Expect a few 1000’s of events by the end of LHC
- $B_S \rightarrow \tau^+\tau^-$ is 250 times more abundant
 - But very difficult at the LHC
- Again, FCC-ee is beyond any foreseeable competition
 - Several 100,000 events expected – reconstruction efficiency under study
LFV τ decays

![Diagram of LFV τ decays](image-url)
Current limits:

- $\text{Br}(\tau^- \rightarrow e^- \gamma) < 3.3 \times 10^{-8}$, BaBar, 10.6 GeV; $4.8 \times 10^8 e^+ e^- \rightarrow \tau^+ \tau^- : 1.6$ expected bckg
- $\text{Br}(\tau^- \rightarrow \mu^- \gamma) < 4.4 \times 10^{-8}$

Main background: Radiative events (IRS+FSR), $e^+ e^- \rightarrow \tau^+ \tau^- \gamma$
- $\tau \rightarrow \mu \gamma$ faked by combination of γ from ISR/FSR and μ from $\tau \rightarrow \mu \nu \nu$

At FCC-ee, with $1.7 \times 10^{11} \tau^+ \tau^-$ events, what can be expected?
- Boost 4 - 5 times higher than at superKEKB
- Detector resolutions rather different, especially ECAL
- Parametrised study of signal and the main background, $e^+ e^- \rightarrow \tau^+ \tau^- \gamma$, performed
 - See two following pages
- From this study (assuming a 25% signal and background efficiency), projected BR limit: 2×10^{-9}
τ → μγ Study – The signal

- Generate **signal events** with pythia8: \(e^+e^- \rightarrow Z \rightarrow \tau^+\tau^- (\gamma) \), with \(\tau^- \rightarrow \mu^-\gamma \)

Smear with assumed FCC-ee detector resolutions:
- Muon momentum [GeV]
 \[\sigma(p_T)/p_T = 2 \times 10^{-5} \times p_T \oplus 1 \times 10^{-3} \]
- Photon ECAL energy [GeV]
 \[\sigma(E)/E = 0.165/\sqrt{E} \oplus 0.010/E \oplus 0.011 \]
- Photon ECAL spatial
 \[\sigma(x) = \sigma(y) = (6/E \oplus 2) \text{ mm} \]

From this, determine **FCC-ee** effective detector resolution for \(\tau \rightarrow \mu\gamma \)

\[\sigma(m_{\gamma\mu}) = 26 \text{ MeV}; \quad \sigma(E_{\gamma\mu}) = 850 \text{ MeV} \]

In order to de-correlate the \(E \) and \(m \) variables, this mass, \(m_{\gamma\mu} \), is in fact the measured mass scaled by measured energy over beam energy:

\[m_{\gamma\mu} = m_{\text{raw}} \times (E_{\gamma\mu}/E_{\text{beam}}) \]
Background: Generate 5×10^8 events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$

- $1 \times 10^9 \tau \rightarrow \mu\nu\nu$ decays corresponding to
- $5.7 \times 10^9 \tau$ decays from $8.4 \times 10^{10} Z$ decays

Study all μ and γ combinations
\(\tau^- \rightarrow \ell^- \ell^+ \ell^- \)

- Current limits:
 - All 6 combs. of e\(^\pm\), µ\(^\pm\): \(\text{Br} \lesssim 2 \times 10^{-8} \)
 Belle@10.6 GeV; 7.2 \(\times 10^8 \) \(e^+e^- \rightarrow \tau^+\tau^- \): no cand.
 - \(\mu^-\mu^+\mu^- \): \(\text{Br} < 4.6 \times 10^{-8} \)
 LHCb 2.0 fb\(^{-1}\): background candidates

- FCC-ee prospects
 - Expect this search to have very low background, even with FCC-ee like statistics
 - Should be able to have sensitivity down to BRs of \(\lesssim 10^{-10} \)

- Many more decay modes to search when time comes...
Summary

- With an unrivalled luminosity, the four stage FCC-ee programme foresees the production of 5×10^{12} Z decays in its first stage
- A treasure trove for precision measurements and discoveries
- Of most direct relevance to this conference is the production of 1.7×10^{11} $\tau^+\tau^-$ pairs:
 - Searches for lepton flavour violating Z decays more sensitive than today by factor $O(10^4)$
 - Sensitivities down to 10^{-9}
 - Improved lepton universality test by $O(10)$ or more. Down to 10^{-4} level on coupling ratios
 - Substantial improvement in τ lifetime measurement: $O(300)$ statistical, $O(10)$ systematic
 - Substantial improvement in τ branching fractions: $O(300)$ statistical, $O(\sim10)$ systematic(?)
 - Possibly competitive measurement of τ mass
 - Searches for lepton flavour violating τ decays with sensitivities comparable with recent Belle2 projections (arxiv:1808.10567)
 - $\lesssim 10^{-10}$ (for channels with no background) to few $\times 10^{-9}$
- Plus, of course,
 - Tau polarisation measurement for $\sin^2\theta_W$, α_s, τ neutrino mass, etc., etc.
Extra Slides
Scaling of $Z \rightarrow \ell\tau$ sensitivity with #events

- **If no backgrounds**: $1/N$ scaling
- **With backgrounds**: $1/\sqrt{N}$ scaling
Cross check: Perform similar study at B-factory, $\sqrt{s} = 10.6$ GeV

- Again 5×10^8 events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$

From this study, estimated limit: 1.9×10^{-9}

Compare to my extrapolation of current BaBar limit: $\sim 3-4 \times 10^{-9}$

Agrees within a factor 2

Not too bad