

The Super Tau Charm Factory Plan in China

Guangshun Huang

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China (USTC)

15th Tau Workshop

Sep. 24-28, Amsterdam, Netherlands

30 Years of τ-c factory in China

BEPCI (1988–2005)

 $10^{31} \text{cm}^{-2} \text{s}^{-1} \Rightarrow 10^{33} \text{cm}^{-2} \text{s}^{-1}$

BEPCII (2006-now)

STCF in China

Super Tau-Charm Factory (STCF)

- Peak luminosity 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV
- **\Box** Energy range $E_{cm} = 2-7 \text{ GeV}$
- Polarization available on beam (Phase II)
- A dedicated machine for HEP, no synchrotron radiation mode considered

A STCF, far beyond BEPCII, is a natural extension and a viable option for a post-BEPCII HEP project in China.

- No synchrotron radiation mode, assume running time 9 months/year,
- Assume data taking efficiency 90%:

 10^{35} cm⁻²s⁻¹ × 86400s × 270 days × 90% ~ 2.0 ab⁻¹/year

10 years data taking, total 10~20 ab⁻¹ conservatively

- One of the crucial precision frontier :
 - rich physics program
 - unique for physics with c quark and τ leptons,
 - great opportunity for study of QCD, exotic hadrons and search for new physics.

Layout of Machine IR : Large Piwinski Angle Collision + Crabbed Waist Symmetric machine with dual-ring (600~1000m) Detector Crab Sextupole Wigglers <u>Injector</u> Snakes Polarization (>80%) Linac 0.5-Full energy linac, no boost 3.5 GeV e- 0.5GeV e+0.5G **Injector:** e⁺, a convertor, a linac and a damping ring, 0.5 GeV

e⁻, a polarized e⁻ source, accelerated to 0.5 GeV

Parameters of Machine

Parameters	1	2
Circumference/m	~600	~600
Beam Energy/GeV	2	2
Current/A	1.5	2
Emittance $(\varepsilon_x/\varepsilon_y)$ /nm· rad	5/0.05	5/0.05
β Function @ IP $\left(eta_x^* / eta_y^* ight)$ /mm	100/0.9	67/0.6
Collision Angle(full θ)/mrad	60	60
Tune Shift ξ_y	0.06	0.08
Hour-glass Factor	0.8	0.8
Luminosity/×10 ³⁵ cm ⁻² s ⁻¹	~0.5	~1.0

Luminosity :

$$L = \frac{\gamma n_b I_b}{2er_e \beta_y^*} \xi_y H$$

- Increase beam current
- Minimize β Function β_y^*
- Optimize ξ_y and H

Strategy :

....

- (Phase 0) Pilot: 0.5 × 10³⁵
- (Phase I) Nominal: 1.0×10^{35}
- (Phase II) Polarized beam

Accelerator Physics

Lattice Design:

- Ring and Interaction Region Lattice: $\beta \downarrow \downarrow \quad \xi_{\nu} \uparrow$

Non-linearity

- Focus $\uparrow \uparrow \bowtie$ Dynamic Aperture \downarrow etc.

Collective Effect

– Current↑ Bunch Size↓↓ ☞ Beam Instability↑ ↑ ↑

Key Technologies

Polarization

- Spin Polarized Electron Source
- Polarization Rotation and Maintenance for Rings and Final Focus

□ RF

Superconducting Cavities, Deflecting Cavities, Higher Harmonic Cavities, etc.

Magnets

 High Quality Magnets with high strength, Superconducting Magnets and Solenoids

Diagnostics and Control

 Low Emittance Measurement, Transverse and Longitudinal Feedback, etc.

Collaboration Needed

A Start Star

□ Accelerator Physics

- IR Design
- Polarization: Spin Rotation and Maintenance
- Collective Effects: Simulation and Bench Measurements
- > Advanced Computational Accelerator Physics
- Accelerator Technologies
 - Superconducting Cavities and Magnets
 - Polarized Beam Sources
 - Ultrahigh Vacuum Chamber with Small Aperture,
 Optimized Impedance and Low SEE

Detector : Requirement from Accelerator

\square High luminosity : **10**³⁵ cm⁻²s⁻¹ :

- High radiation tolerance, especially at IP and forward region
 - ✓ Constrains from IR design, detail MDI studies is necessary

High event rate

Detector/electronics should withstand the expected does and be fast enough.

Detector : Requirement from Physics

A mount of final state particle are of momentum/energy lower than 1 GeV

Detector : Requirement from Physics

Detector : Requirement from Physics

- PID system :
 - A large momentum range : E_{cm} of up to 7 GeV
 - Superior PID (π/K) capability : $D^0\overline{D^0}$ mixing studies
- μID:
 - with lower momentum threshold, higher efficiency and μ/π separation capability
 - ✓ Measurement of D mesons semi-leptonic decays of D mesons
 - ✓ search for cLFV process ($\tau \rightarrow \gamma \mu$)

•

General Consideration of Detector

□ Much larger radiation tolerance, especially at IP and forward regions

- The detector and electronics should withstand the expected does
- **Efficient event triggering**, exclusive state reconstruction and tagging
 - High efficiency and resolutions for charged and neutral particles
 - Fast response, low noise and high rate capability

The Systematic uncertainty control

- **Detector acceptance** : geometrical acceptance or detector response
- Mis-measurement : mis-tracking, fake photon, particle mis-ID, noise
- Luminosity measurement

Reasonable cost

Detector Layout

G.S. Huang: STCF of China

- To combine with a central tracker to improve the tracking efficiency for low momentum track and resolution
- Dominant factor in low p tracks : multiple scattering and energy loss
- Driving force in design : low mass and high precision
- Special design to cope with the large radiation close to IP
- Technologies options :
 - ✓ A low mass silicon detectors: DEPFET, MAPS ...
 - ✓ MPGD : Cylindrical GEM/MicroMegas/uRWELL

Inner Tracker Technologies

 Two layers of PXD: 1.8 cm and 2.2 cm in radius, consisting of 8 and 12 modules for innermost layer and the second, respectively.

Pixel size: $29*27\mu$ m, high resistivity epitaxial, deep PWELL, reverse bias, global shutter (<10 μ s), triggered or continuous readout, resolution < 5um, material budget <0.3%X_o

tau2018, Amsterdam

G.S. Huang: STCF of China

A new MPGD : uRWELL

• Very compact, spark protected, simple to assemble, flexible in shapes (rather easy to make a cylindrical detector)

A possible solution to be inner tracking, R&D underway at USTC.

Out Tracker : A Drift Chamber

Large acceptance, low mass, high efficiency and high resolution

- BESIII drift chamber serve as a good starting point, some refinement
 - R_{in} has to be enlarged to avoid the very high rate region
 - Smaller cell size for inner layers to accommodate a higher count rate
 - No Au coating on Al wires and thinner W wires to reduce material
 - A lighter working gas to reduce material
 - Sharing field wire layers at the axial-stereo boundaries to reduce

material

$$\sigma_{x} \sim 130 \,\mu m$$

$$\frac{\sigma_{P}}{P} \sim 0.5\% @\,1 \text{GeV/C}$$

$$\frac{\sigma_{\frac{dE}{dx}}}{\frac{dE}{dx}} \sim 6\%$$

A Drift Chamber for STCF

- Rin = 15 cm, Rout = 85 cm, L = 2.4 m
- B = 1 T
- He/C₂H₆ (60/40)
- Cell size =1.0cm(inner),1.6cm(outer)
- Sense wire: 20 um W
- Field wire: 110 um Al
- # of layers = 44
- Layer configuration: 8A-6U-6V-6A-6U-6V-6A
- Carbon fiber for both inner and outer walls
- Expected spatial resolution: ${<}130\mu m$
- Expected dE/dx resolution: <7%

Performance of inner/outer trackers

C	Option I: MDC + STAR HFT (geometry is not optimized)										
	Detector	radius (cm)	material (%X ₀)	resolution (µm)							
	MDC Outer 9-48	23.5-82	0.0045 /layer	130							
	MDC Inner 1-8	15-22	0.0051 /layer	130							
	SSD	10	1.5	250							
	PXD 2 layers	3/6	0.37 /layer	30							
	Beam pipe	2	0.15	-							

Option II: MDC + Belle-II PXD (geometry is not optimized)

Detector	radius (cm)	material (%X ₀)	resolution (µm)
MDC Outer 9-48	23.5-82	0.0045 /layer	130
MDC Inner 1-8	15-22	0.0051 /layer	130
PXD 3 rd layer	10	0.15	50
PXD 2 layers	3/6	0.15 /layer	50
Beam pipe	2	0.15	-

G.S. Huang: STCF of China

PID System

- $\pi/K/p$ separation up to 2.0 GeV/c (3-4 σ)
- Fast timing, High radiation resistance for high lumi., especially in the endcap
- Compact reduce costs of the outer detectors
- Modest material budget(<0.5X₀) resolution of following up detector

- dE/dx in the tracking detector
 - ~6% resolution,
 - track length ~0.7 m,
 - π/K ID for p<0.8 GeV/c
- π/K separation at 0.8~2.0 GeV/c,
 - Cherenkov detector and TOF .

Cherenkov PID system

- Threshold Cherenkov
- Imaging Cherenkov:
 - Ring Imaging Cherenkov detector (RICH)
 - Detection of Internally Reflected Cherenkov light(DIRC)

Cherenkov PID system - RICH

ALICE HMPID : High Momentum PID

- Liquid C₆F₁₄ radiator n~1.3 @ 175 nm
- Proximity gap = 80 mm
- Readout pad size 8 mmX8.4 mm
- >3 $\sigma \pi$ /K separation at 3 GeV/c

Already proven:

- Large momentum range
- System complicated

Cherenkov PID system – DIRC

• LHCb : TORCH (Time Of internally Reflected Cherenkov light)

- Large-area Quatz radiator + Light reflecting and focusing mirror, Photoetectors
- MCP-PMT readout
- **BELLE-II : TOP** (Time of Propagation)
 - Quatz radiator + MCP-PMT readout
- PANDA : DIRC
 - Silicon radiator + MCP-PMTs readout

• SuperB : DIRC-Like TOF in Forward Region

Large-area Quatz radiator + MCP-PMT/SiPM readout

LHCb : TORCH

G.S. Huang: STCF of China

A RICH Design for STCF

- avoid photon feedback
- less ion backflow to CsI
- Fast response, high rate capacity
- Radiation hard
- Proximity gap ~10 cm
- Radiator: liquid C₆F₁₄, n~1.3, UV detection

Performance Simulation

The π/K separation requirement can be met with a RICH detector.

MPGD Photon Detector R&D

Double-Mesh Micromegas (DMM), a promising photon detector for RICH

- Single photoelectron detection:
 - achieve $>10^6$ high gas gain and ~ 0.05% excellently low ion backflow ratio;
- **2D high spatial resolution :**
 - A four-corner resistive array anode readout to reduce the amount of electronics channels;
- **Photoelectron convertor :** ۲
 - A Diamond-like Carbon (DLC) photocathode replace the fragile CsI.

DMM prototype and Performance

~0.0005 IBF ratio

Fabricated with a thermal bonding technique, developed by USTC MPGD group.

NIMA, 889 (2018) 78-82

Spatial resolution in size 10x10 mm²

σ=235um

0

position(cm)

0.05

0.1

9.006/24

90.97 ± 3.48

 0.01097 ± 0.00073

0.02345 ± 0.00056

 χ^2/ndf

Mean

Sigma

708

608

50

counts

Constant

ADC

ize 3 × 10⁶ high gain for single photoelectron

<u>ududududududududu</u>

0.15

G.S. Huang: STCF of China

-0.05

-0.1

DIRC-Like TOF for Endcaps

The 3\sigma separation of TOF : $\sigma_t < \frac{1}{3} \frac{x}{c} \frac{1}{2p^2} [m_K^2 - m_\pi^2].$

- For K/p at p=2 GeV/c, $\Delta T \sim 0.27$ ns*X(m) = 270 ps at X~1 m. 3 σ K/p separation for overall TOF time resolution is 90 ps
- For π/K at p=2 GeV/c, ΔT ~ 0.1ns*X(m) = 100ps at X~1 m.
 3σ π/K separation for overall TOF time resolution is ~30 ps.
 Very challenge for TOF technology
- Fast Timing TOF(<30 ps) based on new pico-second timing technology (TOF combined with DIRC method) is an endcap PID option for STCF
- DIRC-Like forward TOF detector (FTOF: quartz + MCP-PMT) was developed at LAL in Orsay for the SuperB project.

Simulation on Fast Timing TOF

- Fused quartz + MCP-MPT readout
- Scintillator (BC420, double layer) with SiPM (or MCP) readout
- Threshold: 1 pe

```
Intrinsic time resolution can
reach to ~30 ps (preliminary)
```


Picosecond Timing TOF @ USTC

PDA(Programmable Differential Amp) LMH6881/2 +
 DDD(Dual-threshold Differential Discriminator)
 Low threshold: 28.7 mV, High threshold: 390.6 mV

EMCal System

General requirement

- High efficiency for low energy γ
- Excellent energy resolution
- Fast response and Radiation hardened
- Better position resolution
 - To improve the kinematic variables of neutral particles
 - High granularity
- Better time resolution
 - To separate γ/neutron

Technology option :

Crystal + novel photon detector (e.g. SiPM)

Crystal Options

Crystal	CsI(TI)	CsI	BSO	PbWO4	LYSO(Ce)
Density (g/cm³)	4.51	4.51	6.8	8.3	7.40
Melting Point (°C)	621	621	1030	1123	2050
Radiation Length (cm)	1.86	1.86	1.15	0.89	1.14
Molière Radius (cm)	3.57	3.57	2.2	2.0	2.07
Interaction Len. (cm)	39.3	39.3	23.1	20.7	20.9
Hygroscopicity	Slight	Slight	No	No	No
Peak Luminescence (nm)	550	310	480	425/420	420
Decay Time ^b (ns)	1220	30 6	100 26,2.4	30 10	40
Light Yield ^{b,c} (%)	165	3.6 1.1	3.4 0.5/0.25	0.30 0.077	85
LY in 100 ns	13	4.6	2.9	0.37 (2-3x †)	78
LY in 30 ns	4	3.3	1.5	0.26 (2-3׆)	45
d(LY)/dT ^b (%/ °C)	0.4	-1.4	-2.0	-2.5	-0.2
Radiation hardness (rad)	10 ³	104-5	106-7	106-7	10 ⁸
Dose rate dependent	no	no	yes	yes	
Experiment	CLEO <i>,BABAR,</i> Belle, BES III	KTeV,E787 Belle2 1 st SuperB 2 nd	Belle2 3 rd	CMS, ALICE PANDA Belle2 2 nd	SuperB 1 st (Hybrid)

G.S. Huang: STCF of China

Crystal Options

	Light Yield	Radiation	Faster	Cost
		hardness	response	
CsI(TI)	\odot	\odot		\odot
Pure Csl	$\overline{\mathbf{S}}$	\odot	\odot	0
PWO	$\overline{\mathbf{S}}$	\odot	\odot	\odot
BGO	\odot	\bigcirc	\odot	(\mathbf{i})
LYSO	\odot	\odot	\odot	(\mathbf{i})

- Barrel ECAL: CsI(TI) or pure CsI could be considered.
- Endcap ECAL : LYSO is considered even expensive price.

Optimization

- Energy deposition : >95.3%
- Dynamic range of SD : 1 MeV ~ 2500 MeV
- Time resolution :

$$\sigma = \frac{1}{\sqrt{N_{pe}}} \sqrt{\left(\frac{1}{2.354}\right)^2 \left\{\tau_{scin}^2 + \left[\frac{n(n-1)L}{2c}\right]^2 + \tau_{PMT}^2\right\}}$$

- better than 100 ps at high energy(>1 GeV)
- Depends on the physics requirement
- **Granularity** :
 - Balance between energy and position regions

Hit Energy Ratio with X_0 Ratio 0.1 0.8 0.08 ₁5 X₀ (>95.3%) 0.6 0.06 0.4 0.04 0.2 0.02 10 20 25 7000 3 GeV/γ inject 6000 5000 4000 3000 2000 1000 0.5 1.0 1.5 2.0 2.5 3.0 3.5 E_{seed} (GeV) Graph 0.03 0.028 0.026 ₩0.024 0.02 0.018 0.016 з 3.5 0.5 1.5 2 2.5 KineticEnergy/GeV

30 MeV

Events / 3

tau2018, Amsterdam

G.S. Huang: STCF of China

SiPM Technology

- SiPM: a novel and rapidly-developing photo-sensor technology
 - High gain, low equivalent noise, B-field resistant, good time resolution
- R&D at USTC

G.S. Huang: STCF of China

µ detection

- Low momentum threshold (p~0.4 GeV)
- high μ efficiency and μ/π suppression power>10 (30)
- Idea to lower muon detection threshold:
 - measuring TOF at entrance to iron yoke a timing muon detector.

Can be realized with MRPC technology

- Below 300 MeV, μ can't reach iron yoke

μ detection

MTD at STAR

Long-Strip MRPC Module at STAR

- Active area: 87 x 52 cm²
- Read out strip: 87 cm x 3.8 cm
- Gas gaps: 0.25 mm x 5

Performance:

- Efficiency: > 98%
- Time resolution: < 80 ps
- Spatial resolution: 0.6 cm

μ detection

- 2-3 inner layers with MRPC for precise timing
- ~8 outer layers with RPC
- RPC operation modes
 - Barrel: streamer
 - Endcap: avalanche
- π rejection power ~ 30

Candidate site: Hefei

One of the three integrated National Science Centers(NSC), which

will play important role in 'Mega-science' of China in near future

Hefei as a NSC

Funds

- Starting ¥ 10M (~\$ 1.5M) endorsed by USTC;
- R&D ¥ 200M (~\$ 30M) expected;
- Budget ¥ 4B (~\$ 0.6B), from local government and/or Chinese Academy of Sciences?
- Domestic Workshops (2011, 2012, 2013, 2014, 2016)
- International Workshops (2015, 2018)
- USTC is now fully supporting STCF!

 $CDR \rightarrow TDR \rightarrow project application \rightarrow construction \rightarrow commissioning$

tau2018, Amsterdam

G.S. Huang: STCF of China

Tentative Plan

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030- 2040	2041- 2042
Form International														
Collaboration			•											
Conception Design														
Report (CDR)														
Technical Design														
Report (TDR)														
Construction														
Commissioning														
Upgrade														

A unique precision frontier in the world for 30 years!

Summary

- Launch R&D project for Super τ-c Facility (STCF) :
 - double ring with circumference around 600~1000 m
 - e⁺e⁻ collision with E_{cm} = 2 7 GeV, L = 1 × 10³⁵ cm⁻²s⁻¹
 - Polarized beam
- The candidate site : Hefei Integrated National Science Center
- A dedicated machine for HEP, one of the crucial precision frontier
 rich physics program, unique for physics with c quark and τ leptons.
- We initialized ¥ 10M (~\$ 1.5M) funds for this year.
- An International coll. is essential for promoting the project.
- At USTC, different positions are opened for the STCF project.