SHiP – Search for Hidden Particles

Kyrylo Bondarenko

bondarenko@lorentz.leidenuniv.nl

The 15th International Workshop on Tau Lepton Physics, Amsterdam, 2018

イロト イヨト イヨト イヨト

Structure of the Standard Model

In the past the structure of the Standard Model was predicting where to expect new physics

We searched for new particles required for the consistency of our explanation of all the previous experiments

- We knew that something should— be found at energies below $E < G_{\text{Fermi}}^{-1/2}$
- Without the top quark the Standard Model would be non-unitary
- Without the Higgs boson the Standard Model would be non-unitary

Higgs boson was the last predicted but unseen particle

- Did century long quest come to its end?
- Where do we need to look for something else?

(日) (四) (日) (日) (日) (日)

Should we believe that new particles exist?

イロト イヨト イヨト イヨト

Physics Beyond the Standard Model

Neutrino masses and oscillations

What makes neutrinos disappear and then re-appear in a different form? Why do they have mass?

- Neutrino oscillations do not tell us what is the scale of new physics
- It can be anywhere between sub-eV and 10¹⁵ GeV

Dark matter

What is the most prevalent kind of matter in our Universe?

• Physics at high scales (10¹² GeV for axions), at intermediate scales (TeVs for WIMPs) or at low scales (keV-ish sterile neutrino, physics below electroweak scale) can be responsible for this

Baryon asymmetry of the Universe

what had created tiny matter-antimatter disbalance in the early Universe?

• Physics on the very different scales can be responsible for it

Question about the evolution of the Universe as a whole

Cosmological inflation:

What sets the initial conditions for all the structure that we see in the Universe? (possibly Higgs field)

Dark Energy:

What drives the accelerated expansion of the universe now (possibly this is just Λ -term)

Deep theoretical questions

- Strong CP problem
- Why Planck scale 10¹⁹ GeV is much higher than the electroweak scale (100 GeV)?
- How to describe gravity quantum mechanically?

(Fundamental questions, but it is possible to be agnostic about them for quantitative description of what was observed so far)

Unsolved problems mean that new particles probably exist

We did not detect them because

they are heavy

OR

they are light but very weakly interacting

Kyrylo Bondarenko (Universiteit Leiden)

September 28, 2018

TAU 2018 6 / 18

イロト イヨト イヨト イヨト

Heavy particles: active LHC searches

ATLAS Exotics Searches* - 95% CL Exclusion							ATLAS Preliminary		
Model	ί.γ	Jets†	E ^{miss} T	∫£ dt[ft	-') Limit	$\int \mathcal{L} dt = (3)$	1.2 - 20.3) tb ⁻⁺	Vs = 8, 13 TeV Reference	
$\begin{array}{c} \text{ADD} \ G_{NK} + g/q \\ \text{BD} \ \text{non-resonant } \ell\ell \\ \text{ADD} \ \text{non-resonant } \ell\ell \\ \text{ADD} \ \text{BD} \ \text{non-resonant } \ell\ell \\ \text{ADD} \ \text{Bf} \ \text{Sp} \\ \text{Bf} \ \text{Sp} \\ Sp$	$\begin{array}{c} - & 2 e_{,\mu} \\ 1 e_{,\mu} \\ - & - \\ 2 e_{,\mu} \\ 2 y \\ r & 1 e_{,\mu} \\ 1 e_{,\mu} \\ 1 e_{,\mu} \end{array}$	$\geq 1j$ - 1j 2j $\geq 2j$ $\geq 3j$ - - - - - - - - - - - - -	Yea Yea 2j Yea	32 203 203 157 32 36 203 32 132 133 203 32	No. 100 100 100 100 100 100 100 100 100 10	6.53 TeV 4.7 TeV 5.2 TeV 8.7 TeV 8.7 TeV 3.2 TeV 3.2 TeV 3.2 TeV	$\begin{array}{l} a=2\\ a=3HZ\\ a=6\\ a=6\\ a=6\\ M_{0}=3TeV_{c}rotBH\\ a=6,M_{0}=3TeV_{c}rotBH\\ A_{0}=M_{0}=3TeV_{c}rotBH\\ A_{0}Mm=1\\ A_{0}Mm=1\\ A_{0}Mm=1.0\\ M_{1}Mm=1.0\\ BM=aSaB(d^{0},X)=rt)=1 \end{array}$	1664.07773 1407.2410 1311.3006 347LAS-CONT-2016-069 1600.00205 1910.00206 1400.4123 1406.00203 ATLAS-CONT-2016-049 1250.07018 ATLAS-CONT-2016-049 1250.07018	
$\begin{array}{c} \text{SSM } Z' \rightarrow \mathcal{U} \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{Laptophobic } Z' \rightarrow bb \\ \text{SSM } W' \rightarrow tr \\ \text{HYT } W' \rightarrow WZ \rightarrow qqqr mot \\ \text{HYT } W' \rightarrow WZ \rightarrow qqqr mot \\ \text{HYT } W' \rightarrow WZ \rightarrow qqqr mot \\ \text{HYT } W' \rightarrow WZ \rightarrow qqqr mot \\ \text{HYT } W' \rightarrow WZ \rightarrow qqqr mot \\ \text{HYT } W' = b \\ \text{LRSM } W_{k}^{*} \rightarrow tb \\ \text{LRSM } W_{k}^{*} \rightarrow tb \end{array}$	2 e, µ 2 τ - 1 e, µ kel A 0 e, µ multi-channo 1 e, µ 0 e, µ	- 2b - 1J 2J el 2b,0-1j 21b,1J 2i	Yes Yes	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3 20.3	2 mini 2	4.05 TeV 4.74 TeV 47 47 47 47 47 47 47 47 47 47 47 47 47	$g_{Y} = 1$ $g_{Y} = 3$ $g_{Y} = 3$ 19.9 TeV $\alpha_{Y} = -1$	ATLAS CONT-2016-045 1502.01771 1602.00791 ATLAS CONT-2016-061 ATLAS CONT-2016-062 ATLAS CONT-2016-062 1607.05021 1410.4103 1410.4103 471.45.CONT-2016.099	
Cl Ut/gq Cl uwtt Axial-vector mediator (Dirac D Axial-vector mediator (Dirac D	2 e, μ 2(SS)/≥3 e, M) 0 e, μ M) 0 e, μ, 1 γ	µ≥1 b,≥1 j ≥ 1 j 1 j	Yes Yes Yes	3.2 20.3 3.2 3.2	A A m _A 1.0 TeV m _A 710 GeV	4.9 TeV	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1607.03669 1504.04605 1604.07773 1604.01306	
22 _{XX} EFT (Dirac DM) Scalar LQ 1 st gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	0 e,μ 2 e 2 μ 1 e,μ	$1 J_i \le 1 j$ $\ge 2 j$ $\ge 2 j$ $\ge 1 b_i \ge 3 j$	Yes - Yes	3.2 3.2 3.2 20.3	M. 550 GeV LO mass 1.1 TeV LO mass 1.05 TeV LO mass 540 GeV		$m(\chi) < 150 \text{ GeV}$ $\beta = 1$ $\beta = 1$ $\beta = 0$	ATLAS-CONF-2015-080 1605.06035 1605.06035 1508.04725	
$\begin{array}{c} \text{VLQ } TT \rightarrow ht + X \\ \text{VLQ } YY \rightarrow Wb + X \\ \text{VLQ } BB \rightarrow Hb + X \\ \text{VLQ } BB \rightarrow Zb + X \\ \text{VLQ } QQ \rightarrow WqWq \\ \text{VLQ } T_{5/3}T_{5/3} \rightarrow WtWr \end{array}$	$1 e, \mu$ $1 e, \mu$ $1 e, \mu$ $2/\ge 3 e, \mu$ $1 e, \mu$ $2(SS)/\ge 3 e,$	$2 b \ge 3 j$ $2 b \ge 3 j$	Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T rosa 855 GeV Y rosa 770 GeV B rosa 735 GeV B rosa 755 GeV B rosa 755 GeV Q rosa 690 GeV Up rosa 690 GeV		T in (T.B) doublet Y in (B,Y) doublet lacepin singlet B in (B,Y) doublet	1525.04306 1525.04306 1525.04306 1409.5500 1509.04201 ATLAS-CONF-2016-332	
Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton r^*	1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j -	- Nes	3.2 15.7 8.8 20.3 20.3 20.3	9' mass 9' mass 9' mass 9' mass 1.5 TeV 7' mass 1.5 TeV 3' mass 1.5 TeV	4.4 TeV 5.6 TeV V	only a^{*} and a^{*} , $A = m(q^{*})$ only a^{*} and a^{*} , $A = m(q^{*})$ $f_{0} = f_{0} = f_{0} = 1$ A = 3.0 TeV A = 1.6 TeV	1512.05910 ATLAS-CONF-2016-009 ATLAS-CONF-2016-000 1510.02664 1411.2921 1411.2921	
LSTC $a_T \rightarrow W\gamma$ LRSM Majorina r Higgs triplet $H^{++} \rightarrow ee$ Higgs triplet $H^{++} \rightarrow \ell r$ Monotop (non-eas prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$ $-$	2 j - 1 b - √s = 13	Yes - Yes - TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	In mark SHO GW M ¹⁰ mark 270 GeV M ¹⁰ mark 270 GeV M ¹⁰ mark 400 GeV M ¹⁰ mark 780 GeV M ¹⁰ mark 780 GeV M ¹⁰ mark 780 GeV		$\begin{split} m(Wg) &= 2.4 \ \text{TeV}, \text{no mixing} \\ \text{DY production, } BP(H_1^{n-1} \rightarrow ee) + 1 \\ \text{DY production, } BP(H_2^{n-1} \rightarrow er) + 1 \\ A_{\text{max} \rightarrow m} &= 0.2 \\ \text{DY production, } g &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1506.00000 ATLAS-CONF-2016-051 1411.2821 1410.5404 1504.04188 1509.08059	

Probed scale $\ll 10^{19} \text{ GeV}$

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Intensity frontier searches for feebly interacting particles

SHiP (*Search for Hidden Particles*) experiment Step by step overview

SHiP (*Search for Hidden Particles*) experiment Step by step overview

SHiP (Search for Hidden Particles) experiment Step by step overview

SHiP (*Search for Hidden Particles*) experiment Step by step overview

SHiP (Search for Hidden Particles) experiment Step by step overview

SHiP (*Search for Hidden Particles*) experiment Step by step overview

- Direct measurements of tau neutrino charged-current (CC) interactions are a fairly recent phenomenon
- The DONUT experiment reported 9 tau neutrino events with a background of 1.5 events from their neutrino beam produced with the 800 GeV Tevatron beam at Fermilab [0711.0728].
- The DONUT does not detect the charge of tau lepton and average over neutrino and antineutrino
- The OPERA experiment reported 4 tau neutrino events with practically no background [1407.3513]
- $\bullet\,$ There neutrinos were produced in $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations, so no tau antineutrino was detected

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tau neutrinos at SHiP

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目目 のへで

Tau neutrinos at SHiP

- $\bullet\,$ The SHiP experiment allows to measure separately ν_{τ} and $\bar{\nu}_{\tau}$ cross sections
- \bullet We expect several thousands ν_{τ} and $\bar{\nu}_{\tau}$ events at SHiP
- Neutrino charged current scattering cross-section

$$\begin{aligned} \frac{d^2 \sigma^{\nu/\bar{\nu}}}{dxdy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2/M_W^2)^2} \left(\left[y^2 x + \frac{m_\tau^2 y}{2E_\nu M} \right] F_1 + \left[1 - y - \frac{m_\tau^2}{4E_\nu^2} - \frac{M x y}{2E_\nu} \right] F_2 \pm \right. \\ &\pm \left[xy(1 - y/2) - \frac{m_\tau^2 y}{4E_\nu M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_\nu^2 M^2 x} F_4 - \frac{m_\tau^2}{E_\nu M} F_5 \right) \end{aligned}$$

• The SHiP experiment offers the first opportunity to measure the structure functions F_4 , F_5

Tau neutrino magnetic momentum

- Neutrinos are electrically neutral fundamental particles that couple to the other particles only through weak interaction in the Standard Model (SM)
- In the minimal extension of the SM where neutrinos are proposed to be Dirac particles, they can acquire a magnetic moment (μ_{ν}) and give rise to electromagnetic interactions [Fujikawa and Shrock, 1980] and

$$\mu_{\nu} \simeq 3.2 \times 10^{-19} \left(\frac{m_{\nu}}{1 \text{ eV}}\right) \mu_B$$

but it can be significantly enhanced in other new physics models

• Contribution from the neutrino magnetic momentum to electron-neutrino scattering

$$\frac{d\sigma_{\nu e}}{dT_e} = \frac{\pi \alpha_{\mathsf{EM}}^2}{m_e^2} \left(\frac{1}{T_e} - \frac{1}{E_\nu}\right) \frac{\mu_\nu^2}{\mu_B^2}$$

イロト (周) (ヨト (ヨト) 三日 ののの

Tau neutrino magnetic momentum at SHiP

- The current limit on tau neutrino magnetic momentum of $3.9 \times 10^7 \ \mu_B$ has been set by the DONUT experiment [0711.0728]
- SHiP can significantly increase this limit

イロト イヨト イヨト イヨト

Tau neutrino magnetic momentum at SHiP

- The current limit on tau neutrino magnetic momentum of $3.9 \times 10^7 \ \mu_B$ has been set by the DONUT experiment [0711.0728]
- SHiP can significantly increase this limit

< □ > < 同 > < 回 > < Ξ > < Ξ

- The SHiP experiment is high-intensity fixed-target experiment with 400 GeV proton beam
- The main physics goal is the search for light feebly interacting particles. But because of its design, SHiP is a perfect place to study tau neutrino (and antineutrino) physics
- Few thousands of tau neutrino charge current scattering is expected. It is enough to study the differential cross-section and measure F_5 structure function for the first time
- SHiP can put a stronger limit on tau neutrino magnetic momentum (study is in progress)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tau neutrino production cross-section

• The charged current cross section per nucleon, scaled by incident energy for (a) ν_{τ} and (b) $\bar{\nu}_{\tau}$ scattering with a lead target with $W_{\rm min} = 1.4$ GeV. The dashed curve has F_4 and F_5 set to zero, while the solid curve has the full expression for the target mass corrected (TMC) cross-section.

イロト イポト イヨト イヨト